
held



- _Z 2

_- _ 2-- 2_-2_

-- 2}:2

3-x:- 7£

...... _=£ c2:LL

• _4X.-, =

2 £

:T_- - --_.T.'_T %_-T _ --.... -- 22_£ii_i_.L

@

...... -= _- _- ---_ 2__

_ _ .., _ _- . _:.._!_._-.-.___

= --_ -- - ,. , .... T"." ...... T-"

-- -- __ - _2.____ --2=..-

=- . =._2_-...... - ___ _--_ .....

- __ ; __ -- _



NASA Conference Publication 3069

Eighteenth
NASTRAN

Users'
Colloquium

Computer Software Management and Information Center

University of Georgia

Athens, Georgia

Proceedings of a colloquium held in

Portland, Oregon

April 23-27, 1990

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Division

1990





FOREWORD

NASTRAN® (NASA STRUCTURAL ANALYSIS) is a large, comprehensive,
nonproprietary, general purpose finite element computer code for structural
analysis which was developed under NASA sponsorship and became available to
the public in late 1970. It can be obtained through COSMIC__ (Computer
Software Management and Information Center), Athens, Georgia, and is widely
used by NASA, other government agencies, and industry.

NASA currently provides continuing maintenance of NASTRAN through COSMIC.
Because of the widespread interest in NASTRAN, and finite element methods in
general, the Eighteenth NASTRAN Users' Colloquium was organized and held at
The Red Lion Portland Center, Portland, Oregon on April 23-27, 1990. (Papers
from previous colloquia held in 1971, 1972, 1973, 1975, 1976, 1977, 1978,
1979, 1980, 1982, 1983, 1984, 1985, 1986, 1987, 1988 and 1989 are published in
NASA Technical Memorandums X-2378, X-2637, X-2893, X-3278, X-3428, and NASA
Conference Publications 2018, 2062, 2131, 2151, 2249, 2284, 2328, 2373, 2419,
2481, 2505 and 3029.) The Eighteenth Colloquium .provides some comprehensive
general papers on the application of finite element methods in engineering,
comparisons with other approaches, unique applications, pre- and
post-processing or auxiliary programs, and new methods of analysis with
NASTRAN.

Individuals actively engaged in the use of _inite elements or NASTRAN
were invited to prepare papers for presentation at the Colloquium. These
papers are included in this volume. No editorial review was provided by NASA
or COSMIC; however, detailed instructions were provided each author to achieve
reasonably consistent paper format and content. The opinions and data
presented are the sole responsibility of the authors and their respective
organizations.

NASTRAN@ and COSMIC© are registered trademarks of the National Aeronautics and
Space Administration.
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A NASTRAN TRAINER FOR DYNAMICS
- >_ _ ....

N 9 0 - 8
H.R. Grooms, P.J. Hinz, and G.L. Commerford

Rockwell International

OVERVIEW

As the use of the finite element method proliferates, the need for training

becomes more and more pronounced. An automated tool to familiarize engineers with

static solutions has been developed and used. This tool (Figure i) is part of an

overall structural analysis/expert training system (ref. I). Experiences with this

tool and comments from users (ref. 2) have underlined the need for a dynamic version
of the trainer.

{ i

This paper presents an automated training tool that engineers can use to master

the application of NASTRAN to dynamic problems. The paper consists of the following

sections:

• Overview

• Background

• Existing Programs

• Scope, Purpose, and System Organization

• Example Problems

• Conclusions

• References

Example problems have been selected to make classical solutions available for

comparison. These comparisons can be used to evaluate the solution.

BACKGROUND

The solution of dynamic problems involves some complications that do not exist

with static problems:

• How many degrees of freedom should be retained for the eigenvalue solution?

• Which discrete mass items are so large or important that they should be

retained for eigenvalue solution?

• How many frequencies and mode shapes are needed and to what accuracy?

An engineer may think that most of the mass associated with a structure can be

traced to the structural members themselves| this is not necessarily true. With many

aircraft and spacecraft, the nonstructural masses (e.g., hydraulic lines, fuel tanks,



environmental control equipment, etc.) have a pronounced influence on the overall

mass distribution and may have the greatest dynamic effect.

The example problems have distributed masses and lumped masses that the user

must consider in the solution approach. These examples help the user develop judgment

when deciding on the number and the particular degrees of freedom to be retained, and

on how to discretize the distributed mass.

EXISTING PROGR_S

Various researchers have developed computer programs for structural analysis and

design applications. Ginsburg (ref. 3) addressed computer literacy, while Woodward

and Morris discussed improved productivity through interactive processing (ref. 4).

Wilson and Holt (ref. 5) developed a system for computer-assisted learning in

structural engineering. Sadd and Rolph (ref. 6) described the various ways in which

design engineers could be trained to use the finite element method. Self-adapting

menus for CAD software are covered by Ginsburg (ref. 7).

Bykat (ref. 8) is developing a system that will have features for training,

analysis control, and interrogation.

SCOPE, PURPOSE, AND SYSTEM ORGANIZATION

The NASTRAN trainer was designed to be a stand-alone tool. The trainer is user

friendly--a knowledge of job control language or the operating system is not

required. A user can sit down at a terminal and, in very little time, start solving

an example problem. The trainer is organized so that a user must complete the static

problems (ref. 2) before the dynamics problems can be accessed. This organization

prevents a user who has no familiarity with the finite element method from starting

with the dynamics section.

The trainer is organized into three main modules: (I) overview, (2) user's

guide, and (3) problem set. Figure 2 shows some details of each module. The user

accesses these modules by using the primary menu. More details of the NASTRAN

environment sections are given in Figure 3.

EXAMPLE PROBLEMS

The example problems, shown in Figures 4 through II and summarized in Table I,

become progressively more difficult to solve. The first problem is a simply supported

beam with a single lumped mass at the center.

There are various courses and classes to instruct engineers in solving dynamics

problems. These courses usually emphasize the theory. A vital part of solving any

large dynamics problems is deciding how many and which degrees of freedom should be

retained for the eigenvalue solution. This is usually a matter of judgment, and it

takes solving many problems to develop this judgment.



Example 2 was solved using three different approaches. The user was trying to

answer some fundamental questions that must be addressed every time a dynamics

problem is solved using the finite element method:

• Is the model fine enough?

• Bare the distributed masses been lumped into enough locations?

• Have enough degrees of freedom been retained in the eigensolution?

Figure 12 summarizes the different approaches. Table 2 compares the computed

three lowest natural frequencies with the exact results.

CONCLUSIONS

An automated training tool that helps engineers become familiar with using

NASTRAN to solve dynamic problems has been presented. The tool allows the user to

proceed at his own pace by using a set of eight example problems. The examples were

selected so that classical solutions are available and displayed, enabling the user

to make comparisons.
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Table i. Example Problems

Example Description SignificantFeatures

6

7

Beamsimplysupportedonbothendswith lumpedmassinmiddle

Beamsimplysupportedonbothendswithuniformlydistributed
mass

Beamfixedononeendwitha lumpedmassatthefreeend

Beamfixedononeendwitha uniformlydistributedmass

Rectangularplateclampedononeedge,allotheredgesfreewith
a uniformlydistributedmass

Rectangularplate,free.freewithuniformlydistributedmass

Twobeamsconnectedbysprings,eachwithdistributedand
lumpedmass

Problem7 witha forcingfunctionadded

Motioninoneplaneonly,lumpedmassonly

Motioninoneplaneonly,distributedmass

Motioninanydirection,lumpedmassonly

Motioninanydirectionwithuniformlydistributedmass

Platebendingwithdistributedmass

Free-free(impliessixmodeswithzerofrequency)

Multibodyproblem,free-free

Forcingfunction

Table 2. Comparison of Natural Frequencies for Example 2

Exact
Solution

9.870

39.48

88.83

First Approach

9.867

39.19

83.21

Second

9.869

39.47

88.66

Third

9.872

39.74

93.62
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Figure 5. Simply Supported Beam with Uniformly Distributed Hass (Example 2)
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Figure 6. Cantilever Seam with Concentrated Mass (Example 3)
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Figure 7. Cantilever Beam with Uniformly Distributed Mass (Example 4)
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Figure 10. Two 8earns Connected by Two Springs (Example 7)
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Figure 11. Two Beams Connected by Two Springs Driven

by a Forcing Function (Example 8)
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Figure 12. Three Approaches to Example 2
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PCI - A PATRAN-NASTRAN MODEL TRANSLATOR

T.J. SHEERER

CHRYSLER TECHNOLOGIES AIRBORNE SYSTEMS, INC.

WACO, TX

INTRODUCTION

The existence of several derivative versions of NASTRAN, which

differ significantly in element definitions and result formulation,

has caused some difficulties in the interface between NASTRAN and

pre- and post- processors such as PATRAN or SUPERTAB. In

particular, the PATRAN-COSMIC/NASTRAN interface provided by PDA

Engineering has not been updated at the same rate as the equivalent

interface with MSC/NASTRAN, and has significantly less

capabilities. Many model entities supported by both PATRAN and

COSMIC/NASTRAN are not supported by the translator. The well-

documented PATRAN neutral file, which is now supported by several

other vendors, has provided a means for the user to create his own

interface program for model translation, while it has also been

possible to pass results form NASTRAN to PATRAN with a user-written

program using OUTPUT2 statements and format information from the

Patran Users' Manual. In recent years PDA engineering has provided

as part of PATRAN a library of subroutines known as gateway

utilities, which extract data directly from the PATRAN database

file and which can be called from a FORTRAN program. As this

eliminates the task of reading the neutral file the work of

creating a translator can be produced by the user with little

effort. This has been done with the object of producing a PATRAN-

COSMIC NASTRAN model translator comparable in scope to the PATRAN-

MSC/NASTRAN translator, but also allowing a greater degree of user

control than is found therein. The different parts of the program

were developed in several locations, as the counterpart to a

results translator developed for Texas Instruments by Texas A and

M University, which also emphasizes flexibility. Both these

programs are public domain programs under the terms of the

development agreement between Texas Instruments and Texas A.M.U.,

and enhancements developed at Chrysler have also been passed to

T.A.M.U.

14



PROGRAM STRUCTURE

PCI supports a range of elements comparable with PATNAS and

significantly greater that PATCOS. The structure of the program

is such that, in effect, it supports elements not currently extant.

In the PATCOS program element types are hard-wired, and if a

different NASTRAN card is required a text editor must be used to

change the bulk data file. If, for example, the QUAD4 element is

required in a model, all elements of this type must be edited from

type QUAD2 to QUAD4, since PATCOS does not currently support the

QUAD4. Similar difficulties arise with other elements. The PATNAS

translator does support a wide range of elements identified by

configuration codes, but the equivalence between elements and

configuration code is controlled from within PATRAN, and the user

can not translate to an element developed in-house, or a newly

introduced element, or simply an element not supported by the

translator. PCI uses a different approach by having a user text

file of twenty NASTRAN element names for each element

configuration. This file may be edited by the user to assign

whatever correspondence he desires between configuration code and

NASTRAN element type. Since most element cards in NASTRAN follow

the same pattern of (NAME,PID/MID,NODES) it is not generally

necessary to write a new subroutine when adding an element.

Frequently the only parameter changed is field one of the NASTRAN

data card, and this is controlled from a text file. Because

NASTRAN and PATRAN use a different numbering sequence for higher
elements it is convenient to use several subroutines to write

NASTRAN elements, but frequently only one routine is required for

each shape/node combination. All 3-node shells, for example, are

written by the same routine. The PATRAN configuration field is

used to select an element name from a range of twenty for each

configuration of shape/nodes. The user-generated text file

ETYPES.DAT contains these names for configurations 1 through 20.

Any elements having the default configuration of zero in the PATRAN

database are assigned the value I in the translator.

Table (I) shows the basic PATRAN element types supported by

PCI and the NASTRAN elements obtainable form them. For comparison

the elements supported by PATCOS and PATNAS are also shown, note

that, in general, failure by PCI to support elements listed for

PATNAS is because they are not supported in COSMIC/NASTRAN. In

practice, alteration of the text file of element configurations

will allow support of these elements if and when they become
available

15



TABLE 1: GEOMETRIC ELEMENT TRANSLATION

CAPABILITIES OF PATCOS, PATNAS AND PC.I

SHAPE/NODES PATCOS PATNAS PCI

BAR/2 CBAR CBAR

CBEAM

CROD

CBAR

CROD

TRIA/3 CTRIA2 CTRIAI

CTRIA2

CTRIA3

CTRIARG

CTRIAI

CTRIA2

CTRBSC

CTRIARG

CTRMEM

CTRPLT

QUAD/4 CQUAD2 CQUAD1

CQUAD2

CQUAD4

CQDMEM1

CQDMEM2

CSHEAR

CTRAPARG

CQUAD1

CQUAD2

CQUAD4

CQDMEM1

CQDMEM2

CSHEAR

CTWIST

CQDPLT

CQDMEM

CTRAPAX

TRIA/6 CTRIM6 CTRIA6

CTRIAX6

CTRIM6

CTRSHL

CTRPLTI

QUAD/8 CIS2D8 CQUAD8 CIS2D8

HEX/8 CIHEXl CHEXA

CHEX8

CIHEXl

CHEXA1

CHEXA2

QUAD/20 CIHEX2 CHEXA

CHEX8

CIHEXI

CHEXAI

CHEXA2

QUAD/32 CIHEX3

16



PCI also supports the SCALAR and damping elements CELAS2 and

CDAMP2 by generating a scalar element for each degree of freedom

specified in a PATRAN SPRING element. The concentrated mass
element CONM2 is obtainable from the PATRAN MASS directive. MPCs

and rigid elements are supported. Table (2) summarizes the support

for these elements. Node translation with embedded SPCs is fully

supported.

TABLE 2: SCALAR, DAMPER AND MASS ELEMENT SUPPORT

PATRAN DIRECTIVE NATRAN CARD WRITTEN BY PCI

MPC MPC

MPC,RROD CRIGIDR

MPC,RBAR CRIGD1

MPC,RBE1 CRBE1

MPC,RBE2 CRBE2

MPC,RBE3 CRBE3

BAR/2/n OR SPRING CELAS2

BAR/2/n OR MASS CONM2

BAR/2/n CDAMP2

LOAD AND CONSTRAINT TRANSLATION:

PCI supports constraint (SPC), nodal force and pressure

translation. FORCE and SPC cards are translated in an element-

dependent manner as shown in Table (3). Only normal element

pressures are supported. PCI will select the appropriate PLOAD

card for the element type. In many circumstances involving higher

order elements several PLOAD cards must be generated for a single

PATRAN pressure load.

17



TABLE 3: PCI SUPPORT OF LOADS AND SPCS

NASTRAN CARD USED IN ELEMENTS SUPPORT

PLOAD4 CQUAD4 YES

PLOAD2 OTHER IST ORDER SHELL YES

PLOAD3 ISOPARAMETRIC SOLID NOT YET

PLOAD 2ND ORDER SHELL YES

COORDINATE SYSTEMS:

The various PATRAN coordinate systems are translated to CORD2

cards in NASTRAN, as in the PATNAS translator. Additionally,

PATRAN nodes, which are stored in the database in the basic

coordinate system, have their locations output to NASTRAN in the

local system associated with the nodes. This is of great

importance if, for example, constraints are to be applied in a

local system.

The PATRAN database includes, associated with each coordinate

system, a 3x3 matrix T such that

= Yb
z

where the suffixes i, b, denote local and basic coordinate systems

respectively. The translator inverts the matrix to produce the
matrix T -l where

ryT] [xi} "'Yb = Yl

z z]

and prints the local values to the NASTRAN data deck.

PROPERTY GENERATION:

It is generally no more difficult to enter property and

material cards in NASTRAN that in PATRAN. For this reason property

generation has not been implemented in PCI.

18



CONCLUSIONS:

The amount of programming required to develop a PATRAN-NASTRAN

translator was surprisingly small. The approach taken produced a

highly flexible translator comparable with the PATNAS translator

and superior to the PATCOS translator. The coding required varied

from around ten lines for a shell element to around thirty for a

bar element, and the time required to add a feature to the program

is typically less than an hour. The use of a lookup table for

element names makes the translator also applicable to other

versions of NASTRAN. The saving in time as a result of using PDA's

Gateway utilities was considerable.

During the writing of the program it became apparent that,

with a somewhat more complex structure, it would be possible to

extend the element data file to contain all data required to define

the translation from PATRAN to NASTRAN by mapping of data between

formats. Similar data files on property, material and grid formats

would produce a completely universal translator from PATRAN to any

FEA program, or indeed any CAE system.

19
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A GENERIC INTERFACE BETWEEN COSMIC/NASTRAN AND PATRAN

Paul N. Roschke, Prakit Premthamkorn, and James C. Maxwell

Texas A&M University

SUMMARY

Despite its powerful analytical capabilities, COSMIC/NASTRAN lacks adequate
post-processing adroitness. PATRAN 1, on the other hand is widely accepted for its

graphical capabilities. A nonproprietary, public domain code mnemonically titled CPI (for

COSMIC/NASTRAN-PATRAN Interface) is designed to manipulate a large number of

files rapidly and efficiently between the two parent codes. In addition to PATRAN's results

file preparation, CPI also prepares PATRAN's P/PLOT data files for xy plotting. The user
is prompted for necessary information during an interactive session. Current

implementation supports NASTRAN's displacement approach including the following rigid

formats: (1) static analysis, (2) normal modal analysis, (3) direct transient response, and

(4) modal transient response. A wide variety of data blocks are also supported. Error

trapping is given special consideration. A sample session with CPI illustrates its simplicity
and ease of use.

INTRODUCTION

Overview

The standard gateway that interfaces COSMIC/NASTRAN's analysis results to
PATRAN's post-processing makes use of NASTRAN's FORTRAN-written results files.
These files can be requested via DMAP ALTER's OUTPUT2 statement in NASTRAN's

executive data deck. They contain data in mixed ASCII and binary code format. However,

they can not be used as direct input to PATRAN. Similarly, PATRAN also supports
communications witla external codes via specially formatted results files. Format of l_hese

files is predetermined according to PATRAN and differs for each data type. Generally,
they can be categorized into three groups according to their formats: (1) nodal results files,
(2) element results files, and (3) beam results files. The number of results files can be as
many as required. Therefore, in order to interface COSMIC/NASTRAN to PATRAN for

post-processing purposes, an interface that is capable of translating from NASTRAN's
analysis results to PATRAN-recognizable files is required.

Fig. 1 shows code and file relationships among the analysis and post-processing
modules. The flow begins with the input of NASTRAN's analysis data deck. DMAP
ALTER statements must be included in the executive control deck in order to obtain a

FORTRAN-written results file. Generally, this file is assigned an extension of .PAT. This
NASTRAN results file is then translated by the COSMIC/NASTRAN-PATRAN Interface

(CPI). Output from CPI is a group of PATRAN-compatible results files and/or a
P/PLOT-compatible data file. These files are ready for PATRAN post-processing.

1 PATRAN is a trademark of PDA Engineering
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PATRAN also requires accessto a neutral file containing geometrical properties of the
model. This file can be obtained via the COSPAT 2 translator, but not by means of CPI.

NASTRAN / I COSMIC/NASTRANINPUT DATA ANALYSIS

COSPAT

TRANSLATOR
:DEOMETRICALI

ATA FILE /

OSPAT.PAT [

JO T OTFILE/
l..OOTI

COSMIC/NASTRAN

PATRAN INTERFACE

TRANSLATOR

PATRAN

* .DIS

* .ELF

*.ERG

*.ELS

*.GPF

etc

POST-PROCESSING

Fig. 1 Code and File Relationships

Program Description

COSMIC/NASTRAN-PATRAN Interface (CPI) translates COSMIC/NASTRAN's
FORTRAN-written results files to PATRAN compatible results files. These results files
can be requested via the OUTPUT2 instruction in the executive control deck. CPI
provides the operation in two modes:

Mode 1 - Whole Model Translation: CPI translates all data blocks contained in the

NASTRAN results file (*.PAT) and creates PATRAN compatible results files

corresponding to data blocks found in the input data file. The user is prompted for the
prefix name of an output file. Different prefixes allow the user to distingmsh between
groups of output files when many results files are translated in a single execution. Up to 6
characters per prefix is acceptable. Created output files and translated data blocks are
summarized on the screen during CPI's execution.

Mode 2 - XY-Plot Data Preparation: CPI creates data for the specified node or element
from a set of data blocks. CPI prompts the user for necessary information, i.e. node
number and component number for nodal data, and searches the input file for any data on

2 COSPAT is a COSMIC/NASTRAN to PATRAN interface, developed by COSMIC, University of Georgia,

Athens, Georgia.
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this node. Each data set is written to PATRAN's P/PLOT compatible data file. CPI

names this file XYPLOT.DAT. When this command is selected, CPI automatically reviews
the data blocks available in the current input file. The user is then prompted to enter the
number corresponding to the data block name shown above this prompt.

Currently, CPI supports NASTRAN's displacement approach including, but not
limited to, the following rigid formats:

ti / Static Analysis (Rigid Format 1)

Normal Modal Analysis (Rigid Format 3)
Direct Transient Response (Rigid Format 9)
Modal Transient Response (Rigid Format 12)

Table 1 shows data blocks supported by CPI. It should be noted that CPI supports
any rigid format as long as the data blocks listed are encountered. Rigid formats named
above are only a guide to the rigid formats most frequently giving rise to these data blocks.

CPI recognizes data blocks, not rigid formats. Table 2 shows elements currently supported
by CPI.

Table 1. Data Blocks Supported by CPI

Data Block Content

OUGV1

HOUGV1

OQG1
OPG1

OPHIG

OUPV1

ONRGY1

OESI(X)
OEF1

OGPFB1

Nodal Displacements
Nodal Temperature
Single Point Constraint
Load Vectors

Eigenvectors
Displacement Vectors
Strain Energy
Element Stress
Element Forces
Grid Point Balance Forces

Table 2. Elements Supported by CPI

Element Name

CROD

CQDMEM2

CTRLA2

CQUAD2

CQUAD 1
CBAR

CTRIARG

CTRAPRG

CQDMEM1
CWEDGE

CHEXA2

CIHEX2

ID Number

1

63

17

18
19

34

36

37

62

4O

42

66

Element Name

CQDPLT
CBEAM

CTUBE

CTRIA1

CTRBSC

CTRPLT

CTRMEM

CONROD

CTETRA

CHEXA1

CIHEX1

CIHEX3

ID Number

15
2

3

6

7

8

9

10

39

41

65

67
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PROGRAM USAGE AND SAMPLE SESSION

COSMIC/NASTRAN-PATRAN INTERFACE (CPI) is an interactive program. A

user can manipulate the program by selecting from menu commands and answering

questions. No special commands are needed. CPI also provides extensive error trapping to

ensure appropriate input and output.

The following sample session (adapted from Ref. 5) illustrates execution of CPI for

transient dynamic analysis results in which a series of time steps is involved. A simple three

node model which is 350 cm. high. and has a cross sectional area of 6.45 cmJ (see Fig. 2), is

used to model a rocket trajectory. Time versus loading of the rocket is shown in Fig. 3.

O

O
L_

1

node

I

- I

Fig. 2 Sample 2 - Geometric Properties

Load (N)

500.0

0.1 I.I
0.0875 1.125

Fig. 3 Sample 2 - Load vs. Time

• Time (see)

After invocation, CPrs opening header appears on the screen and CPI prompts the
user for the name of the NASTRAN results file to be translated. The user then enters the

NASTRAN results file name with its extension. Alternatively, the user can leave the

translator and return to the operating system by entering "EXIT' (or "exit" or "E" or simply

"e"). Here, the NASTRAN results file name is assigned the name "ROCKET.PAT."
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eee******e****ee,e***ee,e**e.eeee.eee,eeee**eeeee**eee

** COSMIC/NASTRAN - PATRAN INTERFACE **
*e e*

** ** C P I ** **

** TEXAS A&M UNIVERSITY **

** & **

** TEXAS INSTRUMENTS **

e* **

** (JUNE 1989) **

ENTER NASTRAN RESULTS FILE NAME OR uEXITml

>ROCKET.PAT

Once the results file has been named, CPI reads the results file header and echoes

it to the screen for verification. Next a menu and a prompt for selection appear on the
screen. The response to CPI should be one of the following:

> 1 Select 1 to translate the entire file and create appropriate PATRAN-compatible
results files.

> 2 Select 2 to translate the data and create PATRAN's P/PLOT-compatible data files
which contain requested nodal or element data.

> 3 Select 3 to specify a new NASTRAN results file.

> 4 Select 4 to exit CPI and return to the operating system.

If the first option is chosen, translation proceeds as follows:

DATE : 7/27/89
HEADER: NASTRANFORT

LABEL : XXXXXXXX

TAPE ID CODE -

_>>>>>> ENTER YOUR SELECTION _<<<<<<

> 1

> ROCKET

i) WHOLE MODEL TRANSLATOR

2) XY-PLOT DATA

3) ENTER NEW RESULTS FILE

4} EXIT

ENTER FILENAME PREFIX (UP TO 6 CHARACTERS)

(EXAMPLE DEFAULT FORMAT: S I .DIS)

IS wIROCKETII THE CORRECT PREFIX? [Y]
><RETURN>

OR [RETURN]
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FILE CREATED

ROCKETS0 II 1. DIS

ROCKETS0 ii2 •DIS

ROCKETS0 ii3 •DIS
I!

11

II

ROCKETS0 iI 5 0 •DIS

ROCKETS0 iI 51. DIS

FROM DATA BLOCK

OUPVl

OUPVI

OUPVI
|!

t!

||

OUPVl

OUPVI

BDm

>>>>>>> ENTER YOUR SELECTION <_<<_<<

>

i} WHOLE MODEL TRANSLATOR

2) XY-PLOT DATA

3) ENTER NEW RESULTS FILE

4) EXIT

At this point the entire model is translated with the creation of the 51 files shown on

the screen during execution. Each file corresponds to a new time step and a new geometric

location of the rocket. It is apparent that running each file with PATRAN to obtain

specific data for a given node and component can become tedious. Therefore, a routine

has been incorporated into CPI to allow the user to create a file that contains only user-

specified data available for plotting with P/PLOT.

When the second option is chosen, CPI reviews data block names existing in the
current results file. The user is asked to select a data block name. CPI classifies data

blocks into two groups: (1) nodal data, and (2) element data. If the selected data block

contains nodal data, CPI prompts for a node number and a component number (1-6). In

general, the six components of nodal data are:

Component 1:

Component 2:

Component 3:

Component 4:

Component 5:

Component 6:

X-direction translation vector

Y-direction translation vector

Z-direction translation vector

X-direction rotational vector

Y-direction rotational vector

Z-direction rotational vector

If the selected data block is an element data block, the user is prompted for an element
number and a column number.

Next, CPI searches for the requested data and, upon completion of gathering the

data, requests a data header extension of the current XY-plot data. Up to 38 characters is

acceptable. Execution proceeds as follows:
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>>>>>>> ENTER YOUR SELECTION <<<<<<<

> 2

i) WHOLE MODEL TRANSLATOR

2) XY-PLOT DATA
3) ENTER NEW RESULTS FILE
4) EXIT

DATA BLOCK REVIEW

1) ouPvx

> 1

> 2

> 2

ENTER DESIRED BLOCKNAME NUMBER

(OR "0" TO EXIT)

ENTER NODE NUMBER

WHICH COMPONENT (1-6)?

ENTER PLOT TITLE EXTENSION FOR DATA SET: I

DEFAULT TITLE: YDATA, DATA SET: 11 NODE: 2; COMPONENT:
m

> Y-TRAJECTORY OF ROCKET

%%%%% NUMBER OF DATA WRITTEN = 51%%%%%

DATA BLOCK REVIEW

i) OUPVl

> 0

ENTER DESIRED BLOCKNAME NUMBER

(OR "0" TO EXIT)

>>>>>>> ENTER YOUR SELECTION <<<<<<<
Jllnlll,

I) WHOLE MODEL TRANSLATOR
2) XY-PLOT DATA

3) ENTER NEW RESULTS FILE
4) EXIT

> 4

CPI Execution Completed

At this point a file called XYPLOT.DAT exists and upon input of this file into P/PLOT,
data is readily graphed for the Y coordinates (component 2) of node 2 of the rocket for
each of the 51 ume steps (Fig. 4).
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Fig. 4 Displacement of Node 2 - Component 2

OUTPUT FILES

Results Translation

CPI creates several results files which provide a direct avenue between COS-

MIC/NASTRAN's analysis algorithms and PATRAN's post-processing capabilities.

COSMIC/NASTRAN's input file (commonly called the input data deck) provides the

name of a binary file which CPI interpolates. For example, EXAMPLE.NAS (the input

data deck) yields EXAMPLE.PAT (the binary file to be translated to PATRAN-

compatible results files). Creation of the binary file is accomplished by inclusion of the

appropriate ALTER statement in the executive control deck of COSMIC/NASTRAN's

input data deck. Only filename extensions are changed by execution of COS-

MIC/NASTRAN. EXAMPLE.PAT is then translated by CPI into appropriate PATRAN-

compatible results files. A description of each file follows.

All CPI output files are given the name 'Xiilnnn.EXT' where X is either an 'S' or an

'M' depending on whether the following two d!git number is either a subcase or a mode
number, respectively, and EXT is the file extensxon named with respect to data type.
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XY-Piot

Selecting "XY-PLOT DATA" at CPrs main menu initiates a prompt screen which
lists the various data blocks found in COSMIC/NASTRAN's binary output file. CPI then
invites the user to specify desired data blocks containing either nodal or element data that
are to be written to XYPLOT.DAT, which is the input file for P/PLOT. This file can
contain one or more data sets depending on how many times the user requests that CPI
write to this file. CPI writes only y-data to XYPLOT.DAT since the user defines an initial
x and delta-x when executing P/PLOT. A description of XYPLOT.DAT's format is given
below.

(1) Nodal Data Blocks

The first line written for each data block contains the default title:

"YDATA, DATA SET: iii; NODE nnnn; COMPONENT j - "

and may be appended to allow for more descriptive titles. This appendage plus the default
title must not exceed 80 characters. If more than 80 characters are specified, those beyond
column 80 are truncated. This allows the user a suffix of anywhere from 33 to 38 characters
depending on the number of digits contained in the default title.

Each line thereafter, until either a ^Z (end of file) or another title is encountered,

contains nodal data for components 1, 2, 3, 4, 5, or 6, i.e., X, Y, Z, Ox, Oy, or Oz,
respectively, as requested from CPI's prompting.

(2) Element Data Blocks

As with nodal data blocks, the first line written for an element data block contains a
default title and takes the form:

"YDATA, DATA SET: iii; ELEMENT nnnn; COLUMN j - "

It may also be appended as described above, but again, the default title plus the appendage
must not exceed 80 characters in length or truncation of characters beyond column 80
occurs. As with the nodal data case, a suffix of 33 to 38 characters is allowed.

The remaining lines associated with the current data set contain element data
available for plotting. The data type is chosen by entry of a column number at CPI's
prompt.

SOFTWARE AND HARDWARE REQUIREMENTS

CPI source code was written in standard FORTRAN 77; however, some special
features of VAX/VMS FORTRAN were implemented. CPI will run on any VAX machine

with a VMS operating system and a FORTRAN compiler. The total length of the source
code is approximately 1200 lines, which requires 104 blocks of disk space.
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ACCURACY OF THE QUAD4 THICK SHELL ELEMENT

William. R. Case, Tiffany. D. Bowles, Alicia K. Croft*

and Mark. A. McGinnis

NASA/Goddard Space Flight Center

SUMMARY

The accuracy of the relatively new QUAD4 thick shell element is assessed via

comparison with a theoretical solution for thick homogeneous and honeycomb

flat simply supported plates under the action of a uniform pressure load. The

theoretical thick plate solution is based on the theory developed by Reissner

and includes the effects of transverse shear flexibility which are not

included in the thin plate solutions based on Kirchoff plate theory. In

addition, the QUAD4 is assessed using a set of finite element test problems

developed by the MacNeal-Schwendler Corp. (MSC). Comparison of the COSMIC

QUAD4 element as well as those from MSC and Universal Analytics, Inc. (UAI)

for these test problems is presented. The current COSMIC QUAD4 element is

shown to have excellent comparison with both the theoretical solutions and

also those from the two commercial versions of NASTRAN that it was compared

to.

INTRODUCTION

The QUAD4 thick shell element, added to NASTRAN in 1987, is one of the most

important additions to the program since the original writing of the code.

The deficiencies of the original QUADI and QUAD2 quadrilateral shell elements

have been recognized for years and have been reported in the literature. At

the Goddard Space Flight Center (GSFC), the quadrilateral shell element is in

use in virtaully all structural analyses of our spaceraft and related

hardware. Typical applications are for the modelling of cylindrical shells

and flat plates made of honeycomb or machined, lightweighted, metal that make

up the structure of spacecraft and scientific instruments. In some cases

these models require that the effects of transverse shear flexibility be

included due to their thickness. The QUAD4 element includes these effects

and, in addition, has an improved isoparametric membrane capability for

in-plane loading.

The purpose of the study reported herein is to assess the accuracy of the

QUAD4 element in modelling a variety of situations involving both solid

cross-section plates as well as those constructed of honeycomb. Three goals

of the study were to determine:

a) what is the rate of convergence to the theoretical solution as the

mesh is refined;

* Currently with Swales and Associates, Inc.
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b) whether the element exhibits sensitivity to aspect ratios

significantly different than 1.0;

c) how the element behaves in a wide variety of modelling

situations, such as those included in the MSC element test library

(discussed below).

The first two questions were addressed in the same manner as several other

studies reported by one of the authors in prior NASTRAN colloquia (references

i and 2). The procedure used in those studies, and followed here also, is to

isolate the effects of mesh refinement and aspect ratio. That is, the mesh

refinement study is done using elements with an aspect ratio of 1.0. Then,

once a fine enough mesh has been reached such that the errors are small, the

effects of aspect ratio can be investigated by keeping the mesh the same (i.e.

same number of elements) and varying the overall dimensions of the problem,

thus resulting in each element aspect ratio changing. Obviously, in order to

accomplish this latter step there must be a theoretical solution (or some

other equally acceptable comparison solution) to the problem with which to

compare the finite element model results. This is needed since, at each step,

a problem of different dimensions (and therefore different theoretical

solution) is being modelled.

The above tests are important in that they show the rate of convergence toward

the theoretical solution as the mesh is refined. Those tests, however, are

not sufficient to completely test the accuracy of a finite element since they

do not test irregular geometries, or a variety of loadings or material

properties. The MSC has developed a comprehensive set of problems for testing

finite elements in a variety of situations (reference 3). The library of

problems consists of 15 test problems for the QUAD4 element that cover all of

the parameters mentioned above. A test of the COSMIC QUAD4 using these

elements was reported at the 17th NASTRAN Users Colloquium in 1987 by Victoria

Tischler of the Air Force Wright Aeronautical Laboratories (AFSC) at Wright

Patterson Air Force Base, Ohio, but was not included in the formal

proceedings. Due to the fact that it was not included in the formal

proceedings, and also due to the fact that errors in the QUAD4 code for

nonhomogeneous plates (to be discussed later) have been corrected, the results

of our testing of the latest version of the element with the MSC library are

include herein.

RESULTS OF MESH AND ASPECT RATIO STUDY

For the mesh and aspect ratio study a theoretical comparison solution is

highly desirable. Since the effects of transverse shear flexibility are

included in the QUAD4 element formulation, a theoretical solution for

moderately thick plates, based on Reissner (or Mindlin) thick plate theory is

also desirable. Such a solution is given in references 4 and 5 for

rectangular simply supported thick plates under the action of a pressure load.

Thus, this problem was used for the mesh and aspect ratio portions of the
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study. Figure i defines the geometry, coordinate system, boundary conditions

and loading for the rectangular plate. The thickness indicates a moderately

thick plate of length to thickness ratio of .20. The effect of transverse

shear flexibility is only approximately 1% on the maximum displacement but is

important in discerning the quality of the convergence of the finite element

results to the exact theoretical solution. By exact is meant the

theoretical basis for the QUAD4 element, which is expressed in the Reissner

thick plate theory. Figure 2 shows the finite element mesh geometry used in

the mesh and aspect ratio studies. Due to symmetry only one quarter of the

plate was modelled The 4 x 4 mesh shown on figure 2 is an example only; the

mesh was varied during the mesh study.

Figures 3a 3c show characteristics of the theoretical solution. As indicated

in figure 3a the central displacement solution is represented as an infinite

series of hyperbolic functions. A FORTRAN computer program was written to

compute the theoretical solutions for displacements (using the series shown)

as well as stresses (solution not shown). As m gets large, where m is the

number of terms included in the series, the hyperbolic functions tend to

overflow the exponent range of the computer. This does not indicate a problem

with the series shown, as the hyperbolic functions appear in both the

numerator and denominator and their ratio is numerically stable. However, in

separately evaluating the numerator and denominator the overflow problem was

encountered. In order to circumvent this problem, the hyperbolic functions

were rewritten in terms of exponentials allowing the programmed equations, in

terms of ratios of numerator and denominator terms, to be evaluated without

overflow problems.

Figures 3b and 3c show the stiffness parameters needed in the theoretical

solution for the homogeneous (i.e. solid) plate and the honeycomb plate. For

the honeycomb plate, two different core stiffnesses were investigeted. The

stiffer one is representative of aluminum honeycomb construction that has been

used at the GSFC. The more flexible one was chosen because it represents a

core flexibility that is quite low and was expected to be a more critical test

of the QUAD4's shear flexibility formulation.

The results of the mesh study, showing the convergence of the QUAD4 solutions

to the theoretical, are presented in tabular form in tables i - 2 and in

graphical form in figures 4 - 7. Both formats show % error in displacement at

the center of the plate as a function of mesh refinement. Results are

included for COSMIC 88, MSC 65C and UAI i0.0 NASTRAN. In the tables results

for COSMIC version 87 is also indicated as will be discussed below. The

tables merely give exact numbers (along with the theoretical displacements)

and the figures contain the same error information, but in graphic form.

Figures 4 and 5 and table i are the results for the homogeneous plate. The

difference between the results in figures 4 and 5 (and that in the two parts

of table I) is that figure 4 (and the top half of table i) is for a solution

in which shear flexibility is included and figure 5 (and the bottom half of

table i) is without shear flexibility. These two situations were investigated

to test the MID3 option on the PSHELL NASTRAN bulk data deck card which allows

the effects of shear flexibility to be ignored if MID3 is left blank. As seen
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in figures 4 and 5 the NASTRAN results converge very rapidly with mesh

refinement for COSMIC 88, MSC 65C and UAI i0.0. Table i contains the same

information along with results for COSMIC 87, the first COSMIC version to

contain the QUAD4 element. As seen, all versions converge to less than 0.5_

error for a mesh size of 8 x 8 with the results without shear flexibility

converging a little more rapidly.

Figures 6 and 7 and table 2 are the results for the honeycomb plate. Figure 6

(and the top half of table 2) are for the honeycomb plate with the stiffer

core and figure 7 (and the bottom half of table 2) are for the more flexible

core. As seen in figures 6 and 7 the NASTRAN results for COSMIC 88 and the

two commercial NASTRAN versions converge very rapidly for the two honeycomb

plates as they did for the homogenous plate. Table 2 contains the same

information along with the results for COSMIC 87. As indicated, the errors in

the first version containing the QUAD4 were extremely large for the honeycomb

plate but, as reported above, were quite good for the homogenous plate. When

this was discovered it was immediately reported to COSMIC. They found the

problem in a program controlled adjustable parameter (which is used to avoid

the infamous shear locking phenomena in earlier thick shell finite elements

based on Reissner plate theory) and sent us a fix within two days. After

modifying the subroutine containing the error, the results became that which

is reported under the COSMIC 88 heading (the same fix was included by COSMIC

in the 88 release).

In order to test the QUAD4's sensitivity to aspect ratio, the model with a

12 x 12 mesh was run in which the plate side dimension in the x direction was

varied. This causes the element aspect ratio to vary while maintaining a

constant mesh in an attempt to remove mesh refinement errors from

significantly affecting the results. As seen in tables i and 2, the QUAD4

results with a 12 x 12 mesh (and aspect ratio of 1.0) have very little error.

The results of the aspect ratio study are presented in figures 8 - i0 and

tables 3 - 5. Tables 3 5 give _ error in the displacement at the center of

the plate versus aspect ratio for a model with a mesh of 12 x 12 QUAD4

elements (over one quarter of the plate). As mentioned above, the aspect

ratio was varied by changing the dimension of the plate along the x axis.

Thus, the results for the aspect ratio of i0 are for a plate (and all QUAD4

elements) that is i0 times as long in the x direction as in the y direction.

Due to this the theoretical solution changes with aspect ratio. Figure 8 and

table 3 are for the homogenous plate (with transverse shear flexibility) while

figure 9 and table 4 are for the stiff core honeycomb plate and figure i0 and

table 5 are for the more flexible core honeycomb plate. Investigation of the

error in the tables, as well as in figures 8 i0 show that the QUAD4 has

essentially no aspect ratio sensitivity over the range investigated.

Based on the above results, the COSMIC QUAD4 element is seen to give very

accurate results for the displacements in the problem investigated, both in

comparison to the exact theory and in comparison to the two commercial

versions of NASTRAN that we have at the GSFC. Although the results are not

presented herein, similarily accurate results were obtained for the shear and

moment stress resultants as well.
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RESULTS OF TESTING USING THE MSC ELEMENT TEST LIBRARY

As mentioned earlier, the mesh and aspect ratio studies, while a very useful

tool in the evaluation of an element, do not test all of the important

variables that affect accuracy in a finite element solution. The MSC element

test library mentioned above represents a rather exhaustive series of tests

that include many of the element related parameters which affect the accuracy

of a finite element solution. Reference 3 gives a detailed description of the

test problems along with theoretical answers and the results of the testing on

several MSC elements. The reader should consult reference 3 for a complete

description of the various problems in the test series. The portion of this

series of element tests that relate to the QUAD4 element was run by the

authors on the QUAD4 elements contained in COSMIC 88, UAI 9.8+ (not version

I0.0 as for the mesh and aspect ratio study) and MSC 65C. As the MSC does in

their report, the results are presented in detail and also in a summary form

in which the element is given a letter grade of A through F based on the

magnitude of the error. Table 6 shows the summary results for the 15 tests in

the series ranging from a simple patch test to modelling of beams (using the

QUAD4 element through the depth) and various plates and shells. The meaning

of the letter grades is given at the bottom of the table. As pointed out in

reference 3, a failing grade for an element in one test is not a reason to

dismiss the element. For one thing, the test scores would improve with mesh

refinement; the mesh used in most of the problems was quite coarse. Of

importance in this discussion is not the actual grades listed in table 6 but

the comparison of the COSMIC grades with those from the other two programs.

As seen in table 6, the COSMIC QUAD4 element is as good as, or better than,

those of the commercial programs. Although not shown in table 6, the old

QUAD2 element (included in reference 3) has a D or F grade in 9 of the 15

problems. This is the reason for the longstanding need for an improved shell

element and the QUAD4 element added to COSMIC NASTRAN clearly fills that need.

Detailed results for each of the problems in the test series are contained in

tables 7 12 and are included for completeness.

CONCLUSIONS

The COSMIC QUAD4 general purpose flat shell element has been shown to be an

excellent element and significantly enhances the usefulness of COSMIC NASTRAN.

The element has been shown to compare excellently with those available in two

commercial versions of NASTRAN that are currently being used at the GSFC. The

addition of an improved triangular shell element, anticipated in the near

future, is highly desireable as a companion element to the QUAD4 in general

analyses of complicated shell like structures.
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a,b

t

P

D, Cn,Cs

E

V

Gc

AR, ARe

W

Nx, Ny

List of Symbols

= plate dimensions

= plate thickness

= pressure load

= plate rigidities (see Figures 3b,3c)

= Young's Modulus

= Poisson's Ratio

= honeycomb core shear modulus

= aspect ratio (ratio of planar dimensions of plate or element)

= plate displacement

= number of elements in model of plate in x, y directions respectively
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TABLE 1

MESH STUDY

THICK HOMOGENEOUS PLATE

ELEMENT ASPECT RATIO 1.0

Theoretical Displacements

With Transverse Shear Flexibility: 3.571 x 10 -5 m

(1.406x 10 -3 in.)

Without Transverse Shear Flexibility: 3.529x 10 -5 m

(1.390x 10 "3 in.)

% Error

Cosmic Cosmic UAI MSC
Mesh 87 88 Ver. 10.0 Ver. 65C

With Transverse Shear Flexibility

lxl 12.03 12.03 12.03 21.76

2x2 4.35 4.34 4.35 2.54

4x4 1.67 1.67 1.67 1.39

8x8 0.59 0.60 0.59 0.53

12x12 0.39 0.41 0.39 0.36

Without Transverse Shear Flexibility

lxl 16.90 16.83 16.90 26.31

2x2 1.12 1.10 1.12 1.67

4x4 0.19 0.18 0.19 0.50

8x8 0.03 0.00 0.03 0.30

12x12 0.00 0.03 0.00 0.18

37



TABLE 2

MESH STUDY

THICK HONEYCOMB PLATE

ELEMENT ASPECT RATIO 1.0

Theoretical Displacements

Gz = 1.517x108 N/m 2 : 2.422x10 -3 m

(9.535x10 -2 in.)

Gz = 1.379x107 N/m 2 : 3.102x10 -3 m

(1.221x10 -1 in.)

% Error
Cosmic Cosmic UAI MSC

Mesh 87 88 Ver. 10.0 Ver. 65C

Gz = 1.517x108 N/m 2 (22000. psi)

lxl 747.3 -16.31 -7.21 -17.98

2x2 589.9 -1.17 4.87 3.26

4x4 311.4 -0.25 1.46 1.19

8x8 103.3 -0.06 0.37 0.31

12x12 47.9 -0.03 0.16 0.14

Gz = 1.379x107 N/m 2 (2000. psi)

lxl -6550.4 -6.71 10.31 4.92

2x2 -5127.3 0.26 5.51 4.57

4x4 -2689.0 0.09 1.42 1.22

8x8 -888.5 0.02 0.36 0.31

12x12 -412.2 0.01 0.16 0.14
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TABLE 3

ASPECTRATIOSTUDY

THICK HOMOGENEOUSPLATE

WITH TRANSVERSESHEARFLEXIBILTY
12X12 MESH

AR
theoreticalw,
m (in.)

% Error
Cosmic UAI

88 Ver. 10.0
MSC

Ver. 65C

3.571x10-5

(1.406x10-3)

-0.38 0.39 0.36

8.865x10-5

(3.490x10-3)

0.28 0.26 0.27

11.34x10-5

(4.465x10-3)

-0.83 -0.01 0.05

10 11.38x10-5

(4.482x10-3)

-0.04 -0.06 -0.02
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TABLE 4

ASPECTRATIOSTUDY

THICK HONEYCOMBPLATE,Gz=l.517 x 108N/m2(22000.psi)
12X12 MESH

AR

%Error
theoreticalw, Cosmic UAI MSC
m (in.) 88 Ver. 10.0 Ver. 65C

2.422x10-3

(9.535x10-2)

0.02 -0.16 -0.14

2 5.974x10-3

(2.352x10-1)

0.05 -0.12 -0.13

5 7.631x10-3

(3.004x10-1)

0.24 0.13 0.07

10 7.660x10-3

(3.016x10-1)

0.27 0.17 0.14
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TABLE 5

ASPECT RATIO STUDY

THICK HONEYCOMB PLATE, Gz=1.379 x 107 N/m 2 (2000. psi)

12X12 MESH

AR

% Error

theoretical w, Cosmic UAI MSC

m (in.) 88 Ver. 10.0 Ver. 65C

3.102x10 -3

(1.221x10 -1)

-0.01 -0.16 -0.49

2 7.026x10 -3

(2.766x10 -1)

0.03 -0.12 0.23

8.785x10 -3

(3.459x10 -1)

0.20 0.01 0.06

10 8.815x10 -3

(3.470x10 -1)

0.24 0.41 0.14
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TABLE 6

SUMMARY OF TEST RESULTS FOR QUAD4 SHELL ELEMENTS

Test

1. Patch Test

2. Patch Test

3. Straight Beam, Extension

4. Straight Beam, Bending

5. Straight Beam, Bending

6. Straight Beam, Bending

7. Straight Beam, Bending

8. Straight Beam, Twist

9. Curved Beam

10. Curved Beam

11. Twisted Beam

12. Rectangular Plate (N=4)

13. Scordelis-Lo Roof (N=4)

14. Spherical Shell (N=8)

15. Thick-Walled Cylinder

(nu=.4999)

Number of Failed Tests (D's and F's)

Elem. Loading
In Out of

Plane Plane

X

X

X

X

X

X

X

X

X

X X

X

X X

X X

X

Element COSMIC UAI

Shape 88 9.8+

Irregular A A

Irregular A A

All A A

Regular B B

Irregular F F

Regular A A

Irregular A A

All B B

Regular C C

Regular B B

Regular A A

Regular A A

Regular B B

Regular A A

Regular B B

MSC
65C

A

A

A

B

F

A

B

B

C

B

A

B

B

A

F

1 1 2

Grading for Shell Element Test Results

Grade Requirement

A 2% > Error
B 10% _>Error :, 2%
C 20% _>Error > 10%
D 50% > Error > 20%
F Error > 50%
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TABLE 7
PATCH TEST RESULTS

Constant-Stress Loading

Constant-Curvature Loading

Maxium % Error in Stress

Cosmic
88

Quad4

UAI
Ver 9.8+

Quad4

MSC
Ver. 65C

Quad4

0.00 0.00 0.00

0.00 0.00 0.00
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TABLE 8
RESULTSFORSTRAIGHTCANTILEVEREDBEAM

No.rrnalizedTip Displacement*
m Directionof Loading

Tip Loading Cosmic UAI MSC
88 Ver. 9.8+ Ver. 65C

Direction Quad4 Quad4 Quad4

(a)RectangularElements

Extension 0.996 0.996 0.995
In-planeShear 0.904 0.904 0.904
Out-of-planeShear 0.985 0.985 0.986
Twist 0.958 0.957 0.941

(b)TrapezoidalElements

Extension 1.00 0.992 0.996
In-planeShear 0.071 0.071 0.071
Out-of-planeShear 0.980 0.979 0.968
Twist 0.937 0.934 0.951

(c)ParallelogramElements

Extension 0.992 0.992 0.996
In-planeShear 0.080 0.080 0.080
Out-of-planeShear 0.986 0.986 0.977
Twist 0.895 0.892 0.945

*: Normalizingdisplacementvalueslistedin Ref.3. It is usuallyatheoreticalvalue.
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TABLE 9
RESULTS FOR CURVED BEAM

Normalized Tip Displacement*
in Direction of Loading

Tip Loading Cosmic UAI
88 Ver. 9.8+

Direction Quad4 Quad4

In-plane Shear 0.834 0.833
Out-of-plane Shear 0.971 0.971

MSC
Ver. 65C

Quad4

0.833
0.951

RESULTS FOR TWISTED BEAM

Normalized Tip Displacement*
in Direction of Loading

Tip Loading Cosmic UAI MSC
88 Ver. 9.8+ Ver. 65C

Direction Quad4 Quad4 Quad 4

In-plane Shear 0.995 0.995 0.993
Out-of-plane Shear 0.984 0.984 0.985

*: Normalizing displacement values listed in Ref. 3. It is usually a theoretical value.
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Nodes/

Edge

2

TABLE 10
RESULTS FOR RECTANGULAR PLATE

Normalized Lateral Deflection at Center*

Uniform Load Concentrated Load

Cosmic UAI MSC Cosmic UAI MSC
88 V. 9.8+ V. 65C 88 V. 9.8+ 65C

Simple Supports
(a) Aspect Ratio = 1.0

1.01 1.05 0.981 1.05 1.04 1.02

4 1.01 1.02 1.00 1.02 1.02 1.02

6 1.01 1.01 1.00 1.01 1.01 1.01

8 1.00 1.01 1.00 1.01 1.01 1.01

(b) Aspect Ratio = 5.0

2 0.986 0.983 1.05 0.999 0.989 0.811

4 0.988 0.984 0.991 1.02 1.01 0.932

6 0.995 0.995 0.997 1.03 1.02 0.973

0.997 0.997 0.998 1.03

Clamped Supports

(a) Aspect Ratio = 1.0

1.02 0.989

2 1.052 1.046 1.008 0.971 0.963 0.994

i4 1.038 1.034 1.032 1.020 1.015 1.010

1.0226 1.024

1.017

1.023

1.016

1.027

1.0138

1.018

1.0121.016

1.012

1.010

(b) Aspect Ratio = 5.0

2 1.121 1.112 1.314 0.689 0.663 0.519

!4 1.023 1.019 1.016 0.987 0.974 0.863

6 1.013 1.010 1.017 1.028 1.019 0.940

1.014 1.0138 1.017 1.034 1.027 0.972

Normalizing displacement values listed in Ref. 3. It is usually a theoretical value.
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TABLE 11
RESULTSFORTHICK-WALLED CYLINDER

NormalizedRadialDisplacement*
atInnerBoundary

Poisson's Cosmic UAI MSC
Ratio 88 Ver. 9.8+ Ver. 65C

Quad4 Quad4 Quad4

0.4900 1.027 1.027 0.864

0.4990 1.032 1.032 0.359

0.4999 1.033 1.033 0.053

*: Normalizingdisplacementvalueslistedin Ref.3. It isusuallyatheoreticalvalue.

47



TABLE 12
RESULTSFORSCORDELIS-LOROOF

NormalizedVerticalDeflection*
atMidpointof FreeEdge

No. of Spaces Cosmic UAI MSC
perEdge 88 Ver. 9.8+ Ver.65C

Quad4 Quad4 Quad4

2 1.450 1.450 1.376
4 1.070 1.070 1.050
6 1.030 1.030 1.018
8 1.019 1.019 1.008
10 1.015 1.015 1.004

RESULTSFOR SPHERICAL SHELL

Normalized Vertical Deflection*

at Midpoint of Free Edge

No. of Spaces Cosmic UAI MSC
per Edge 88 Ver. 9.8+ Ver. 65C

Quad4 Quad4 Quad4

2 1.020 1.011 0.972
4 1.043 1.040 1.024
6 1.023 1.020 1.013
8 1.010 1.009 1.005
10 1.004 1.003 1.001
12 1.000 0.999 0.998
16 0.998 0.997 0.997

*: Normalizing displacement values listed in Ref. 3. It is usually a theoretical value.
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l Y

F_g. 1

Test Problem

b/2

1

i_ X

b/2

Plate Size: a =1.016 m (40. in.)* b =l.O16m (40.in.)

Boundary Conditions: simply supported on all edges

Loading: pressure load, p=6895. N/m ^2(1.0 psi) +Z direction

Thickness: t=0.0508 m (2.0 in.)

*: Variable in aspect ratio studies
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Fig. 2

Mesh Geometry

/1/4 of plate

J
modelled

I_..i a _l

b/2

ARe= ae/b e = element aspect ratio

N x=a/2a e= number of elements in X direction in 1/4 of plate

Nv = b/2b e = number of elements in Y direction in 1/4 of plate
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Fig, 3a

Theoretical Solution- Central Displacement

Central Displacement

w(x=_ 'y=O) = aD m.l,3._....
+ C5cosh(l_y) + I_yC6sinh(l_y)

+ 1_2D( 1__ l+___v)] sin I_X.
Cs Cn - 1_5

where,

1
Cs = - cosh O_m

1 ].i.-- + tanh(o_m)
Cn _O_m

1

C6 = 2 cosh _m

m_ b m_
O_m : _=2 a' a
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Fig. 3b

Theoretical Solution - Homogeneous Plate Parameters

Homogeneous Plate

Et3
D-

12( 1-v 2)

5Et
Cn-6 v

5 E
Cs = _-Gt, G-2(l+v)

E = 6.89x lOlO N/m 2 (10.0 x 106 lb/in2)

v = 0.33
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Fig. 3c

Theoretical Solution - Honeycomb Plate Parameters

Honeycomb Plate

D

Eftt(tc+tf/2) 2

4( 1 -V 2)

Cn---oo

Cs-- tcGc

Ef = 6.89x lOlON/m 2

(10 x 106 lb/in 2)

v = 0.33

tc

J Face Sheet

J
Core Detail

Gc = 1.379 x 107N/m 2 (2000, lb/in2)

or

1.517x 108N/m 2 (22000. lb/in2)
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Fig. 4

Error in Displacement at Center of Plate

Mesh Size Study

Homogeneous Plate with Transverse Shear Flexibility

Element Aspect Ratio 1.0
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Fig. 5
Error in Displacement at Center of Plate

Mesh Size Study
Homogeneous Plate without Transverse Shear Stiffness

Element Aspect Ratio 1.0
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Fig. 6
Error in Displacement at Center of Plate

Mesh Size Study

Stiff Honeycomb Plate

Element Aspect Ratio 1.0
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Fig. 7

Error in Displacement at Center of Plate

Mesh Size Study

Flexible Honeycomb Plate

Element Aspect Ratio 1.0
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Fig. 8
Error in Displacement at Center of Plate

Aspect Ratio Study
Homogeneous Plate

12 x 12 Mesh
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Fig. 9

Error in Displacement at Center of Plate

Aspect Ratio Study

Stiff Honeycomb Plate
12 x 12 Mesh
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Fig. 10

Error in Displacement at Center of Plate

Aspect Ratio Study

Flexible Honeycomb Plate
12 x 12 Mesh
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EIGENVALUE COMPUTATIONS WITH THE QUAD4 CONSISTENT-MASS MATRIX

Thomas A. Butler

Los Alamos National Laboratory

SUMMARY

The NASTRAN user has the option of using either a lumped-mass

matrix or a consistent- (coupled-) mass matrix with the QUAD4 shell

finite element. At the Sixteenth NASTRAN Users' Colloquium (1988),

Melvyn Marcus and associates of the David Taylor Research Center

summarized a study comparing the results of the QUAD4 element with

results of other NASTRAN shell elements for a cylindrical-shell

modal analysis. Results of this study, in which both the lumped-

and consistent-mass matrix formulations were used, implied that the

consistent-mass matrix yielded poor results. In an effort to

further evaluate the consistent-mass matrix, a study was performed

using both a cylindrical-shell geometry and a flat-plate geometry.

Modal parameters were extracted for several modes for both

geometries leading to some significant conclusions. First, there

do not appear to be any fundamental errors associated with the

consistent-mass matrix. However, its accuracy is quite different

for the two different geometries studied. The consistent-mass

matrix yields better results for the flat-plate geometry and the

lumped-mass matrix seems to be the better choice for cylindrical-

shell geometries.

INTRODUCTION

At the 1988 NASTRAN Users' Colloquium, results of a study

using the QUAD4, four-node, shell finite element for shell

vibrations was presented (ref. I). This study indicated that using

the QUAD4 element with a consistent-mass matrix results in poor

prediction of natural frequencies of a cylindrical shell. The

errors in predicted frequencies were small for lower circum-

ferential harmonics (n<4) and grew from approximately i0 per cent

for the fourth circumferential harmonic to over 20 per cent for the

sixth circumferential harmonic. The errors seemed to be relatively

independent of the longitudinal harmonics. The authors conclude

that the poor performance is probably caused by either a bad
formulation of the consistent-mass matrix or, more likely, a coding

error in the program. The QUAD4 element is described in reference

2.
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In an effort to determine whether either of the above reasons

for the poor results is correct, a study was undertaken at Los

Alamos to gain more insight into the problem. Earlier studies to

evaluate the performance of the element for static problems

indicate that the stiffness matrix formulation is correct. Also,

results reported in reference 1 for the QUAD4 element with a

lumped-mass matrix indicate that the problem is not with the

stiffness matrix because the error in frequency prediction is quite

low (less than 4 percent even for higher circumferential har-

monics). Of course, some degradation in accuracy is expected for

higher harmonics because the mesh density can become a limiting

factor.

As a first step in our evaluation, an independent check of the

formulation and coding was performed. No problems were found with

either the formulation or the coding. As a final check, the mass

matrix for a single element oriented at a skew angle to the global

coordinate system was calculated by hand, and then results of the

code were compared. There apparently are no errors in either the

formulation or the coding.

A brief review of the literature on the subject of consistent-

mass matrices does lend some insight into the problem. Clough and

Wilson (ref. 3) state that, if the consistent-mass formulation is

used with a displacement compatible element, resulting frequencies

are always larger than the true frequencies. With a lumped-mass

matrix, the frequencies may be above or below the true frequencies

leading to the possibility that use of the lumped-mass matrix

formulation _ result in more accurate frequency predictions. The

NASTRAN Theoretical Manual (ref. 4) describes errors associated

with both consistent- and lumped-mass matrices for the rod

elements. Fortunately, in this case, the errors turn out to be

opposite in sign and of equal magnitude for lower-order terms.

Thus, an accurate mass matrix can be generated simply by averaging

the lumped- and consistent-mass matrices. The case does not appear

to be the same for shell elements. Stavrinidis et al. (ref. 5)

propose improved mass matrices for several elements, including the

one-dimensional bar, two-dimensional membrane, and the pure bending

beam element. Their method and other methods using so-called

"higher-order" mass matrices depend on the predicted frequencies

being consistently high or low. With significant effort, similar

methods may be applicable to the current three-dimensional shell

problem. However, as will be seen later in this paper, solutions

with the consistent-mass matrix for the QUAD4 element can be either

high or low, depending on the geometry of the structure.

TEST PROBLEMS

Two test problems were chosen for this study. The first was

a free-free flat plate for whose natural frequencies we have
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closed-form, analytical solutions. The second was a right,

circular cylinder. Closed-form solutions do not exist for this

geometry, so the finite-difference code BOSOR (ref. 6) was used
with a fine mesh to establish the reference frequencies and mode

shapes. BOSOR results compare favorably with approximate solutions

presented by Blevins (ref. 7).

The flat plate was a i0 by i0, 0.l-thick square. Its elastic

modulus was 1.0 x 105 , Poisson's ratio was 0.3, and the density was

1.0. Figure 1 shows the first three vibration modes of the plate

with the theoretical frequencies.

The cylindrical shell had a radius of 300 and a length of 600.
The material thickness was 3.0. Its elastic modulus, Poisson's

ratio, and density were 3.0 x 106 , 0.3, and 2.588 x 10 .4. The

cylinder ends were simply supported without axial constraint (rigid

diaphragm). Table I gives the reference frequencies calculated

with BOSOR (ref. 6) for the cylindrical shell, along with the

approximate solutions given by Blevins (ref. 7).

FINITE ELEMENT MODELS

Three different finite-element codes were used to model each

of the two test problems. The finite-element code SPAR (ref. 8)

was used with its E43, four-node quadrilateral element. This

element is based on a mixed formulation first proposed by Pian

(ref. 9). For analyzing these problems both the lumped- and

coupled-mass matrices in the SPAR code were used. Because the E43
element is based on an assumed-stress function, rather than an

assumed-displacement function, its coupled-mass matrix is not

"consistent." That is, it is not derived from the same

displacement functions used in deriving the stiffness matrix. Two

types of elements were used with the ABAQUS finite-element code

(ref. I0). The S8R5 element is an eight-node element that has only

a consistent-mass matrix option. The $4R5 element is a four-node

element that offers only a lumped-mass matrix. Finally, NASTRAN

was used with the QUAD4 element with both the lumped- and the

consistent-mass matrix options. In addition, the problems were

analyzed with NASTRAN using a matrix that is the average of the

consistent- and lumped-mass matrices.

The flat plate was modeled with three mesh densities having

three, five, or seven nodes along each edge of the plate. ABAQUS
was not used with the coarsest mesh because that would have

resulted in a one-element mesh for the eight-node S8R5. The

cylindrical shell was also modeled with three different mesh

densities. These meshes had 5, 9, or 17 nodes on each edge. For

the ABAQUS eight-node element, fewer total nodes were present

because of the lack of the middle node. For this study, only one

eighth of the shell was modeled, and symmetry conditions were used

on all boundaries. Thus, only the even circumferential and odd

longitudinal harmonics were determined.
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All the NASTRAN solutions were obtained using the FEER
eigenvalue extraction method. The mass-orthogonality test
parameter was 0.0001 for the analyses.

RESULTS

Results for the flat plate are shown in figures 2 through 4.
In these figures, the horizontal axes show the number of nodes on
each side of the square mesh and the vertical axis is the natural
log of the absolute value of the error in predicted frequency. The
error is simply the ratio of the calculated frequency to the
theoretical frequency minus 1.0. For reference, a plotted
in(error) of -4.6 is approximately 1.0 per cent in error in

absolute frequency determination. A plotted value of -8.0 is

roughly equivalent to 0.03 per cent error.

The data points labeled "lumped," "consistent," and "average"

are all for the NASTRAN QUAD4 element. Study of the results

reveals some definite patterns. As might be expected, the

consistent-mass matrix always outperforms the lumped-mass matrix.

However, the rates of convergence seem to be approximately the

same. The SPAR results that were obtained by using the coupled-

mass matrix are consistently better than the NASTRAN results.

However, the convergence pattern is not smooth and, for all cases,

the SPAR E43 element with its coupled-mass matrix yields better

answers with the intermediate, rather than the fine, mesh. This

result is somewhat disturbing, although, in all cases, the errors

were small. The ABAQUS SSR5 element also gives slightly better

results than does the NASTRAN QUAD4 element. For the flat plate,

the elements with the consistent-mass matrix formulation always

overpredicted the frequencies and those with the lumped-mass

matrices always underpredicted the frequencies.

Results for the cylinder are not as clear as for the flat

plate. Figures 5 through 7 show the frequency-convergence

characteristics for the elements that are being considered for

three different modes. These involve the second, fourth, and sixth

circumferential harmonics (n=2,4,and 6) and the first longitudinal

harmonic (m=l). The most striking observation is that, for the

QUAD4 element, the lumped-mass matrix is now outperforming the
consistent-mass matrix. This observation seems to confirm the

result of Marcus (ref. i). To illustrate the point, data from

reference 1 have been added to the figures. Here, the definition

of the ordinate axis has to be qualified. In reference I, a 13

node by 37-node mesh was used in modeling one half of a cylinder.

This becomes a 7-node by 19-node mesh when an eighth of the

cylinder is considered, as is the case for this study. Because,

for the modes presented, only the first longitudinal harmonic is
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present, we can loosely define this as a 7 by 7 mesh and plot it

as such on our figures.

Only for the lower, second harmonic (fig. 5) does the ABAQUS

S8R5 element outperform the NASTRAN lumped-mass element. For all

three modes, the QUAD4 with the lumped-mass matrix yields the best

results. Its deviation from the QUAD4 with the consistent-mass

matrix increases with higher circumferential harmonics. The SPAR,

E43 element with a coupled-mass matrix tends to follow the QUAD4

element closely for these modes.

Except for a few cases, the frequencies were overpredicted

for consistent-, lumped-, and coupled-mass matrices for the

cylindrical-shell problem. The exceptions were the QUAD4 lumped-

mass matrix and the E43 coupled-mass matrix for the finest mesh for

the second and third modes considered here.

Frequency is not the only parameter that should be considered

for modal analyses. The other is, of course, the mode shape. One

method of comparing mode shapes is to compare calculated

generalized masses for the solutions using the different elements

being considered. Another is to use a parameter frequently

calculated when comparing calculated mode shapes with

experimentally measured mode shapes. This parameter is called the

mode shape correlation coefficient (MSCC) and is described in

reference ii. It essentially provides a measure of the least-

squares deviation of the points being compared from a straight-line
correlation. Both these measures were used in comparing solutions

for the n=8, m=5 mode for the cylinder being considered here.

Results of these comparisons are summarized in table II, along with

comparisons of the predicted frequencies. The predicted

frequencies are normalized using the BOSOR code results as the

baseline. The generalized masses were normalized using the

theoretical value obtained by direct integration of the square of

the analytically perfect mode shape multiplied by the material

density. For the MSCC comparisons, mode shapes predicted by BOSOR

were used as the "correct" shape.

A study of the results summarized in table II shows again that

the lumped-mass matrix provides better frequency predictions than

does the consistent-mass matrix for the NASTRAN QUAD4 shell

element. Note that for the 9-node by 9-node mesh, the error for

the consistent-mass matrix is over 30 per cent. A finer mesh (17

by 17) with the consistent-mass matrix provides better frequency

approximations, but the prediction is still not as good as for the

lumped-mass matrix with a coarser mesh. The generalized mass is
in considerable error for both QUAD4 cases in which the consistent-

mass matrix is used.

The generalized mass is a much more sensitive measure of mode

shape error than the MSCC, as evidenced by data for the ABAQUS
results that used the $8R5 element. Here the MSCC is quite close
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to 1.0 for the 9-node by 9-node mesh, but the generalized mass is
over 30 per cent in error. As the mesh is refined, the generalized
mass improves, but it is still not as accurate as for the QUAD4
when a lumped-mass matrix is used. Note that the performance of
the ABAQUSS4R5 element compares favorably with the NASTRANQUAD4
element.

The SPAR E43 element, which performed nearly as well as the
QUAD4 in predicting frequencies for all the shell modes considered
in this study, apparently predicts both the frequency and
generalized mass accurately if the coupled-mass matrix is used.
However, somewhat unexpectedly, this element does not perform quite
so well with a lumped-mass matrix. In this case, the frequency is
predicted accurately but the mode shape has considerable error
associated with it, as evidenced by the underprediction of the
generalized mass.

CONCLUSIONS

Among the elements considered in this study, the NASTRANQUAD4
element with a lumped-mass matrix seems to be the best choice when
the geometry is a cylindrical shell. A general rule seems to be

that, for any element considered here, consistent-mass matrices

should be avoided for this particular geometry. On the other hand,

for flat-plate geometries, the consistent-mass matrix outperforms
the lumped-mass matrix.

These conclusions imply that choices are difficult when

modeling geometries that deviate from the simple geometries

considered here. It is possible that an alternate method of

deriving the mass matrix, such as the SPAR coupled-mass matrix,

would generate a result that would be more generally applicable.

Note that it seems to perform well for both geometries. However,

for the present, if the geometry is predominantly cylindrical, the

lumped-mass matrix should always be used with the NASTRAN QUAD4
element.
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TABLE I

PREDICTED FREQUENCIES (Hz) FOR CYLINDRICAL SHELL USING BOSOR (BLEVINS)

FOR EVEN CIRCUMFERENTIAL HARMONICS (n) AND ODD LONGITUDINAL HARMONICS (m).

2 19.61(21.82)

4 7,92 (8.27)

6 7.32 (7.59)

8 10,76 (11.68)

3

47.97 (48.61)

33.27 (33.85)

23.64 (24.00)

20,63 (20.94)

J

5

54.69(r .83)

47.05 (47.30)

39.56 (39.83)

35.18 (35.47)

TABLE II

COMPARISON OF FREQUENCY, GENERALIZED MASS, AND MODE SHAPE PREDICTED

BY VARIOUS FINITEELEMENT MODELS FOR CYLINDRICAL-SHELL MODE n=8 m--5.

Nodes/side Computer code/ Mass Normalized Mode shape Normalized

element matrix frequency correlation coef. generalized mass

9 SPAR/E43 coupled 1,032 0.9995 1.011

9 SPAR/E43 lumped 1.046 0.9853 0.810

9 ABAQUS/SSR5 consistent 0.982 0.9998 0.677

17 ABAQUS/S8R5 consistent 1.010 0.971

9 ABAQUS/S4R5 lumped 0.987 0.995

9 NASTRAN/QUAD4 lumped 1,014 0.9991 1.01 0

9 NASTRAN/QUAD4 consistent 1.336 0.603

17 NASTRAN/QUAD4 consistent 1.066 0.876
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Figure i. Mode shapes and frequencies (Hz) for flat plate.
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Huntsville, Alabama
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COSMIC/NASTRAN, as it is supported and maintained by COSMIC, runs on four

main-frame computers - CDC, VAX, IBM and UNIVAC. COSMIC/NASIRAN on other

computers, such as CRAY, AMDAHL, PRIME, CONVEX, etc., is available co_nercially

from a number of third party organizations. All these cc_mlters, with their own

one-of-a-kind operating systems, make NASTRAN machine dependent. The job control

language (JCL), the file management, and the program execution procedure of these

computers are vastly different, although 95 percent of NASTRAN source code was
written in standard ANSI FORTRAN 77.

The advantage of the UNIX operating system is that it has no machine

boundary. UNIX is becoming widely used in many workstations, mini's, super-PC's,

and even some main-frame ccmputers. NASTRAN for the UNIX operating system is

definitely the way to go in the future, and makes NASTRAN available to a host of

computers, big and small.

Since 1985, many NASTRAN improvements and enhancements were made to conform

to the ANSI FOEIRAN 77 standards. A major UNIX migration effort was incorporated

into COSMIC _ 1990 release. As a pioneer work for the UNIX environmen%, a

version of COSMIC 89 NASTRAN was officially released in October 1989 for DEC

UTJTRIX VAXstation 3100 (with VMS extensions). A COSMIC 90 _ version for DEC

ULTRIX DECstation 3100 (with RISC) is planned for April 1990 release. Both

workstations are UNIX based computers. The COSMIC 90 NASTRAN will be made

available on a TK50 tape for the DEC ULTRIX workstations. Previously in 1988, an

88 NASTRAN version was tested successfully on a SiliconGraphics workstation.

INTRODUCTION

The advantage of AT&T's UNIX operating system is that it is an "open

system", hardware independent, single and multiuser system, powerful, versatile,

and reliable. This "open system", which may appear under different names such as

ULTRIX, XENIX, Sthn(_, AIX etc., is becoming the standard software today for the

fast-growing market of workstation computers. Even IHM is going to adopt UNIX for

its forthcoming workstations. As many more computers are designed to run under the

UNIX banner, these newcomers are getting cheaper, faster, and more powe/ful. Tne
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result: unprecedented price competition that's making UNIX another word for cheap

computing. The migration of NASTRAN to the UNIX "open system", is definitely the

way to go.

THE EARLY DEVELOPMENT

NASTRAN is written mainly in FORIRAN language. Only about five percent of

the scurce codes are machine-dependent. The early stage of migration, started in

1984-1985, was a move towards ANSI FOR_AN 77, which is a standard FORIRAN

compiler for all UNIX based computers. In this early stage of development, the

NASTRAN UNIVAC version was moved from the 'FOR' ccmpiler to the 'FIN' cumpiler,
and the CDC version from FORI_AN 4 to FORIRAN 5. The VAX NASTRAN had been

maintained as a separate version until the 1984 release. This release shared the

machine independent source code with the other computers (IBM, CDC and UNIVAC).

TEST ON SiliconGraphics WORKSTATION

A NASTRAN test program, based on C0SMIC/NASTRAN 88 VAX release, was

converted and ran "successfully" on a SiliconGraphics workstation. Only

occasionally this test program failed in scme NASTRAN dynamic problems. Several

UNIX job control languages (JCis) were written to compile, link edit, and execute

NASTRAN for this test program. These JCls played an important part in the sucoess

of the siliconGraphics pilot NASTRAN test. With further refinement and i_provement

(done in 1989), the JCLs, applicable to all UNIX based cc_ters, play an

important role in the NASTRAN migration to UNIX. The JCL to execute a NASTRAN job

(cold start, restart or substructuring) is indeed very user friendly.

This SiliconGraphics test program was also used to identify and verify

efficiency improvements of the NASTRAN source code. The UNIX utility profiler,

prof, was used for timing studies of the codes needing efficiency improvement.

These studies resulted in over 30 percent speed improvement of the VAX NASTRAN
version. The other NASTRAN versions were also benefited.

All changes that were required to ma_ this SiliconGraphics test program

successful, were incorporated into the machine independent NASTRAN source codes.

VAX NASTRAN

The VAX version of NASTRAN is written entirely in FORIRAN language.

Hardware-wise, VAX and many UNIX based ousputers are quite similar. They are

virtual memory c_ with 32-bit word arc/litecture. The file management
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systems are quite similar. The VAX FORTRAN version is the natural choice for the

migration of NASTRAN to the UNIX system.

The NASTRAN GINO (General Input aNd Output file management) package of the

VAX version has gone through extensive revision and improvement in 1987-1988. Many

I/0 processes have been shortened and streamlined. The packing and unpacking of

matrix data were improved and speeded up. The UNIX based computers have therefore

benefited from previous VAX improvements. (The improved VAX GINO and matrix

packing/unpacking was also tested successfully on an IN 3084 machine)

The VAX 89 NASTRAN release was ccmpiled and linked successfully on a DEC

ULTRIX VAXstation 3100 (with VMS extensions), using the UNIX JCls from the

SiliconGraphics test program. Only one subroutine, CrKYgIM that obtains the C_J

time from the computer system, needed modification. All 119 NASTRAN demonstration

problems, plus 20 more user problems, ran successfully. This NASTRAN UNIX version

was officially released on a TK50 tape in October 1989.

The DEC ULTRIX DECstation 3100 (with RISC, Reduced Instruction Set Chip)

required additional modification of the NASTRAN source codes. (See next

paragraph.) Occasionally this version failed in same dynamic problems, exhibiting

the same symptom as that of the SiliconGraphics test program. There will be no

official 89 release of this UNIX version. Presently, it is planned to have a 90

NASTRAN release for UNIX based computers with RISC processors.

UNIX/FOm_AN REQUIRm_m_S

The ANSI FORTRAN 77 is the standard FORTRAN compiler for all UNIX based

computers and workstations. However, small differences may exist among ANSI

FORTRAN 77 compilers from different manufacturers. The 1990 COSMIC/NASTRAN

incorporates many known specifications that are required by various ANSI FORXP_

77 compilers. The changes involve:

a. External declaration of bit-shifting functions (LSHIFT and RSHIPT),

the logical functions (ANDF and ORF), and complement function

(OOMPI2), to avoid system functions of the same names.

b. Standardization of OPEN, READ and WRITE ccmmmnds for direct-access

files.

c. Removalofoctalandh_dec_iconstantsfromFoRTRANexecutable

source code.

d. Elimination of jumping into an inner do-loop, which was previously

allowed via an ASSIGN start.

e. Dimension of one for all open core arrays.

f. Alignment of all open core arrays.
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The last change (f) above is the most tricky process for UNIX based

conputers, particularly those with RISC. Throughout the NASTRAN sourc_ code,

several hundred labelled con_ns are used for the open core space. (NASTRAN has no

dimension limit. The open-ended open core is used as scratch space for internal

conputations and storage). The other mainframe computers, particularly the non-

virtual CDC and UNIVAC machines, require this open core space to have a unique

name in a subroutine or group of subroutines, such that the open core space can be

positioned strategically in the executable overlay program. To compromise among

the virtual (UNIX based _ters, VAX and IBM) and the non-virtual n_mory

computers (that require program overlays), a block data routine, ZZOORE.f, was

written to be used only for the UNIX based computers. All the open core labelled

con_ns are included in this block data routine. The labelled conmon /XNSTRN/ must

be the very first in the list, and /ZZZZZZ/ must be the very last. These first and

last labelled ccmm_n requirements must be true not only in the YORXIhAN source

code, but also in the compiled relocatable (or object) program. The user could use

the UNIX command 'nm -n ZZCORE.o' to verify that /XNSTRN/ and /ZZZZZZ/ are

positioned correctly. If they are not, something must be done to get the NASIIhEN

open core alignment correct. It is for this reason (too many labelled commons in

one subroutine) that the DEC ULTRIX DECstation 3100 (RISC) uses two block data

routines: ZZOORE.f for NASTRAN links 1 through 14, and ZZKORE.f for NASTRAN link

15. It is also for this reason that a C-plxx/ram, SOROBJ.c, is included .in the

UNIX NASTRAN release tape, to sort the open core labelled commons in ZZCORE.o (a

relocatable file), only if all other efforts fail to obtain the proper alignment.

OONCIIJS ION

The 90 COSMIC/NASTRAN release incorporates many changes as required by the

UNIX based computers and workstations. With a set of proven user friendly UNIX

JCIs, it should run successfully on many UNIX based computers presently available,

or still on the vendors' drawing boards. (FORTRAN compile and link edit are

required. ) Of course, this 90 COSMIC/NASTRAN release will continue to operate as

before on the I_M, VAX, CDC and UNIVAC mainframes. This is a version that bridges

from the old world of proprietary and limited operating systems to the new UNIX

world of "open system".
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SUMMARY

A novel and general procedure for obtaining eigenvalues and eigenvectors for multiple fre-

quency ranges in a single NASTRAN execution is presented. The scheme is applicable to normal

modes analyses employing the FEER and Inverse Power methods of eigenvalue extraction. The

procedure is illustrated by examples.

INTRODUCTION

NASTRAN currently offers four methods for real eigenvalue extraction. They are the Tridi-

agonal or Givens method, the Tridiagonal Reduction or FEER method, the Inverse Power method

and the Determinant method (see Section 10 of Reference 1 for details).

The Givens method is a transformation method that computes all of the eigenvalues in a prob-

lem; in addition, eigenvectors corresponding to a specified range of frequencies or to a specified

number of lowest eigenvalues can also be computed. The FEER method is also a transformation

method that allows for the extraction of a specified number of eigensolutions. It requires the

specification of a "shift point" or frequency around which the eigensolutions are desired. The

Inverse Power and Determinant methods are both tracking methods that allow for the extraction of

a specified number of eigensolutions. They both require the specification of a frequency range for

which the eigensolutions are desired.

When all, or almost all, of the eigenvalues in a problem are required, the Givens method is the

generally the most efficient method to use because the total effort is not highly dependent upon the

number of eigenvalues that are extracted. However, when the order of the problem exceeds a few

hundred, this method may require prohibitively time-consuming out-of-core operations, thereby

losing its efficiency.
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If an useris not interestedin obtainingall of themodesin a problem,butonly in a smaller
numberof eigensolutionsaroundacertainfrequencyor withinacertainfrequencyrange,theFEER,
theInversePowerandtheDeterminantmethodsaretheobviouschoices.Thecomputationsin all
of thesemethodsareproportionaltothenumberof eigensolutionsextracted.TheFEERmethodis
probablythemostefficientof thethree. It isquiteeffectivein obtainingeigensolutionsaroundthe
selectedfrequency.It is alsoveryefficientevenwhenout-of-coreoperationsareinvolved. The
resultsobtainedby the InversePowerand Determinantmethods,on the other hand,are very
susceptibleto thenumberof estimatedrootsspecifiedfor agivenfrequencyrange(field 5 on the
EIGRbulkdatacard;seeReference2). Whenthespecifiednumberfor theestimatedrootsis larger
thantheactualnumberof rootsin thatrange,thesemethodsareaptto yieldmanylowerfrequencies
outsidethespecifiedfrequencyrange. TheDeterminantmethodis theleastefficientof all of the
methodsandwill, therefore,notbeconsideredany furtherfor thepurposeof this paper.

CURRENT PROCEDURE FOR OBTAINING EIGENSOLUTIONS

FOR MULTIPLE FREQUENCY RANGES

There are practical situations in which an user may be interested in obtaining eigensolutions for

multiple frequency ranges, with one frequency range quite distinct and apart from another frequency

range. Complex configurations involving control systems, experimental setups and structural

subsystems are examples of such situations.

None of the eigenvalue extraction methods discussed earlier can accomplish the above objec-

tive directly. So, if the user wishes to obtain eigenvalues for more than one range of frequencies in

such cases as the above, he can accomplish it at present in one of two ways. The first way is for the

user to make a single NASTRAN execution with a large frequency range (or a shift point in

conjunction with a large number of desired roots) so as to encompass all of the frequencies in the

ranges of interest. However, this will not be very cost effective if the frequency ranges of interest

are widely separated. The alternative way is for the user to perform multiple NASTRAN executions,

one execution for each range of frequencies, effectively utilizing the APPEND feature (see Section

9.2.2 in Reference 1 and Section 2.3.7 in Volume 2, Reference 2). However, this latter procedure

involves checkpoint/restart runs and is rather cumbersome for the purpose.

PROPOSED PROCEDURE FOR OBTAINING EIGENSOLUTIONS

FOR MULTIPLE FREQUENCY RANGES

The above objective of obtaining eigensolutions for multiple frequency ranges can be accom-

plished in a single NASTRAN execution by an innovative procedure that involves the use of DMAP

ALTERs in conjunction with certain specific input data requirements. This procedure involves

performing a normal modes analysis employing multiple subcases and using the FEER method or

the Inverse Power method (whichever is preferred). Each subcase is setup so as to obtain

eigensolutions in a specified frequency range. The final results of the analysis will contain the

eigensolutions obtained in all of the specified frequency ranges. This procedure is, in essence, a

novel application of the APPEND feature referred to above. The important difference is that, while

the APPEND feature was originally conceived to be employed in a checkpoint/restart environment,

the proposed procedure accomplishes this in a single NASTRAN execution.
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TheDMAP ALTER packagerequiredfor theaboveprocedureis givenin AppendixA. The
detailsof theinputdatarequirementsandtheoutputobtainedfrom theanalysisarediscussedbelow.

Executive Control Deck

The user should employ tbe DMAP ALTER package given in Appendix A either by explicitly

including it or by referencing it via a READFILE card in the Executive Control Deck. Note that,

for every additional subcase beyond the first subcase, the ALTER package involves a pair of OFP
and READ modules.

Case Control Deck

The user should have as many subcases in the Case Control Deck as the number of distinct

frequency ranges for which he wishes to obtain eigensolutions. Each subcase must have a separate

METHOD request. The METHOD request in each subcase references a distinct EIGR card in the

Bulk Data Deck that either implies (in the case of the FEER method) or defines (in the case of the

Inverse Power method) a distinct frequency range.

All output requests and constraint specifications must be above the subcase level. Thus, the only

difference between one subcase and another must be the different METHOD that they request. Also,

since the final results include eigensolutions for all of the subcases, PLOT requests should not make

explicit references to subcase numbers.

Bulk Data Deck

In addition to the required modeling (geometry, constraints, etc.) data, the Bulk Data Deck

should have as many EIGR cards as the number of subcases employed (and the corresponding

METHOD requests) in the Case Control setup.

When using the FEER method, the EIGR bulk data card for each METHOD request requires

the specification of a shift point or frequency that indicates the center of a frequency range as well

as the number of desired roots (see Reference 2). The user should specify appropriate values

accordingly. The shift point specified has a significant effect on the actual eigensolutions extracted.

Accordingly, depending upon the shift point specified, the actual number of roots computed may be

more or less than the number of desired roots specified in the data.

When using the Inverse Power method, the EIGR bulk data card for each METHOD request

requires the specification of a frequency range, the number of desired roots as well as the number

of estimated roots in the specified frequency range (see Reference 2). The number of estimated roots

specified has a significant effect on the actual eigensolutions extracted. However, the user, in

general, will not have an a priori idea of the actual number of eigenvalues that may exist in a

particular frequency range. Accordingly, the user should use his best judgment to specify this

number. A number for the estimated roots that is larger than the actual number of roots in that range

will, in general, yield a number of lower frequencies that are outside the specified frequency range.

It should also be noted here the eigensolutions resulting from any particular subcase will include

not only the eigensolutions that are computed in that subcase, but also the eigensolutions resulting
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from all previoussubcases.Accordingly,regardlessof which eigenvalueextractionmethodis
employed,thenumberof desiredrootsspecifiedon theEIGRcard for aparticularsubcasemust
allownotonlyfor therootsthatwill becomputedbythatsubcase,butalsoincludetherootscomputed
by all of theprevioussubcases.

Output from the Analysis

As mentioned earlier, the final results from the analysis will include the eigensolutions for all

of the subcases specified in the Case Control Deck setup. The DMAP ALTER package given in

Appendix A also generates the eigenvalue summary table and the eigenvalues for all of the subcases

of the analysis. If the user so desires, he can suppress any of these intermediate results by

commenting out the OFP modules corresponding to those subcases (see Appendix A). Also, for

every subcase, the program indicates the number of roots from all previous subcases that are included
in that subcase.

EXAMPLES

Two examples were set up to illustrate the procedure discussed above. Details are given below.
All of the runs were made on RPK's CRAY version of NASTRAN.

Example 1

The standard NASTRAN Demonstration Problem No. D10-02-1A (see Reference 3) was

selected for this example. This problem employs the Givens method for eigenvalue extraction. The

cyclic frequencies obtained for this case are presented in Table 1.

This problem was then modified to use the Inverse Power method and eigensolutions for two

frequency ranges (500.0 - 1000.0 hertz and 20000.0 - 30000.0 hertz) were requested using the

procedure described above. The input data setup is given in Appendix B.

The cyclic frequencies obtained for this case are presented in Table 2. It can be seen that these
frequencies are subsets of those in Table 1.

Example 2

A variation of NASTRAN Demonstration Problem No. D03-08-1A (without any SUPORT

data) (see Reference 3) was selected for this example. This problem also employs the Givens method

for eigenvalue extraction. The cyclic frequencies obtained for this case are presented in Table 3.

This problem was then modified to use the FEER method and eigensolutions around three shift

points or frequencies (100.0 hertz, 1500.0 hertz and 5300.0 hertz) were requested using the

procedure described above. The input data setup is given in Appendix C.

The cyclic frequencies obtained for this case are presented in Table 4. It can be seen that these
frequencies are subsets of those in Table 3.
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Theresultsof theaboveexamplesclearlydemonstratethevalidity andusefulnessof thepro-
posedmethod.
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CONCLUDING REMARKS

A novel procedure for obtaining eigenvalues and eigenvectors for multiple frequency ranges in

a single NASTRAN execution is presented. The scheme is applicable to normal modes analyses

employing the FEER and Inverse Power methods of eigenvalue extraction. The procedure is

illustrated by examples. The procedure should be particularly helpful in large problems with widely

separated frequency ranges.
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APPENDIX A

DMAP ALTERs for Obtaining Eigensolutions for Multiple

Frequency Ranges in a Single NASTRAN Execution

$ THE FOLLOWING ALTERS ARE FOR DISPLACEMENT RIGID FORMAT 3

$ (NORMAL MODES ANALYSIS). SIMILAR ALTERS WILL WORK FOR

$ OTHER RIGID FORMATS THAT INVOLVE REAL EIGENVALUE

$ EXTRACTION.

$

$ NOTE THAT, FOR EVERY SUBCASE BEYOND THE FIRST SUBCASE, THE

$ ALTERS BELOW INVOLVE A PAIR OF OFP AND READ MODULES.

$

$ INSERT AFTER THE READ MODULE IN THE RIGID FORMAT

$
INSERT READ $ ON RPK-SUPPORTED VERSIONS

$ USE ALTER 70 $ ON 1989 COSMIC-SUPPORTED VERSIONS

$ USE OF ALTER 70 $ IS ALSO PERMITTED ON RPK-SUPPORTED VERSIONS

$

$ USE THE FOLLOWING OFP STATEMENT TO REQUEST THE EIGENVALUE

$ SUMMARY TABLE AND THE EIGENVALUES THAT ARE AUTOMATICALLY

$ OBTAINED BY THE RIGID FORMAT FOR THE FIRST SUBCASE

$

OFP OEIGS,LAMA .... //S,N,CARDNO $

$

$ COMPUTE THE EIGENSOLUTIONS FOR THE SECOND SUBCASE

$ (THE LAST PARAMETER 2 IN THE FOLLOWING READ MODULE

$ INDICATES THAT THE ANALYSIS IS FOR THE SECOND SUBCASE)
$

READ KAA,MAA,MR,DM,EED,USET,CASECC/LAMA,PHIA,MI,OEIGS/

*MODES*/S,N,NEIGV/2 $

$

$ USE THE FOLLOWING OFP STATEMENT TO REQUEST THE EIGENVALUE

$ SUMMARY TABLE AND THE EIGENVALUES FOR THE SECOND SUBCASE

$ (THE RESULTS WILL INCLUDE THE RESULTS FOR THE FIRST SUBCASE)
$

OFP OEIGS,LAMA .... //S,N,CARDNO $

$

$ COMPUTE THE EIGENSOLUTIONS FOR THE THIRD SUBCASE

$ (THE LAST PARAMETER 3 IN THE FOLLOWING READ MODULE

$ INDICATES THAT THE ANALYSIS IS FOR THE THIRD SUBCASE)
$
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APPENDIX A

(Continued)

READ KAA,MAA,MR,DM,EED,USET,CASECC/LAMA,PHIA,MI,OEIGS/

*MODES */S,N,NEIGV/3 $

$

$ USE THE FOLLOWING OFP STATEMENT TO REQUEST THE EIGENVALUE

$ SUMMARY TABLE AND THE EIGENVALUES FOR THE THIRD SUBCASE

$ (THE RESULTS WILL INCLUDE THE RESULTS FOR THE FIRST AND

$ SECOND SUBCASES)

$
OFP OEIGS,LAMA .... //S,N,CARDNO $

$
$ COMPUTE THE EIGENSOLUTIONS FOR THE LAST SUBCASE

$ (THE LAST PARAMETER n IN THE FOLLOWING READ MODULE

$ SHOULD BE AN INTEGER VALUE CORRESPONDING TO THE LAST

$ SUBCASE, INDICATING THAT THE ANALYSIS IS FOR THE LAST SUBCASE)

$

$ THE FINAL RESULTS (WHICH INCLUDE THE RESULTS FOR ALL OF THE

$ SUBCASES) ARE AUTOMATICALLY OUTPUT BY THE RIGID FORMAT

$
READ

$
CASE

EQUIV

KAA,MAA,MR,DM,EED,U SET,CASECC/LAMA,PHIA,MI,OEIGS/

*MODES*/S,N,NEIGV/n $

CASECC,/CASEXX/*TRAN* $

CASEXX,CASECC $

ENDALTER $
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APPENDIX B

Input Data Setup for NASTRAN Demonstration Problem

No. D 10-02-1A Modified to Use the Procedure Described

in the Paper

ID o°°

READFILE alters

CEND

SUBCASE 10

METHOD = 100

SUBCASE 20

METHOD = 200

BEGIN BULK

EIGR, 100,I NV ,500.0,1000.0,5,5,,,+EIG 1

+EIG1,MAX

EIG R,200,INV,20000.0,30000.0,10,10,,,+EIG2

+EIG2,MAX

ENDDATA
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APPENDIX C

Input Data Setup for NASTRAN Demonstration Problem

No. D03-08-1A (Without Any SUPORT Data) Modified to

Use the Procedure Described in the Paper

ID o,°

READFILE alters

CEND

SUBCASE 11

METHOD = 1001

SUBCASE 21

METHOD = 2001

SUBCASE 31

METHOD = 3001

BEGIN BULK

EIGR, 1001 ,INV, 100.0,,,5 ,,,+EIG 1

+EIG 1,MAX

EIGR,2001,INV,1500.0,,,10,,,+EIG2

+EIG2,MAX

EIGR,3001 ,INV,5300.0,, 12,,,+EIG3

+EIG3,MAX

ENDDATA
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TABLE 1

Natural Frequencies for NASTRAN

Demonstration No. DI0-02-1A

Mode No. Cyclic Frequency (Hz)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

3.996147E+01

2.364137E+02

2.504423E+02

7.014011E+02

7.034198E+02

1.153105E+03

1.375429E+03

1.574398E+03

1.956923E+03

2.277239E+03

2.291261E+03

2.569183E+03

2.783842E+03

2.929954E+03

3.003921E+03

3.411562E+03

4.786588E+03

6.412708E+03

8.291552E+03

1.030759E+04

1.371895E+04

1.657422E+04

2.009181E+04

2.424947E+04

2.913932E+04

3.485085E+04

4.136255E+04

4.828881E+04

5.437856E+04

6.805413E+04



TABLE 2

Natural Frequencies for NASTRAN Demonstration

No. DI0-02-1A Modified to Use the Procedure

Described in the Paper

Computed

Mode

No.

1

2

3

4

5

6

7

8

9

Corresponding

Mode No.

in Table 1

2

3

4

5

22

23

24

25

26

Cyclic

Frequency

(Hz)

2.364137E+02

2.504423E+02

7.014011E+02

7.034198E+02

1.657422E+04

2.009181E+04

2.424947E+04

2.913932E+04

3.485085E+04

Subcase in Which

Computed

(See Appendix B)

First

First

First

First

Second

Second

Second

Second

Second
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TABLE 3

Natural Frequencies for NASTRAN

Demonstration No. D03-08-1A

(Without Any SUPORT Data)

Mode No. Cyclic Frequency (Hz)

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15
16

17

18

19

20

21
22

23

24

25

26

27

28
29

30

31

32

33

34

35

36

37

38

39

40
41

7.341481E-04
4.168523E-04

6.790643E-05

1.505714E-04

2.765971E-04

6.434454E-04

2.987344E+00

3.372945E+00

2.447569E+01

2.682217E+01

6.154903E+01
7.034309E+01

1.133579E+02

1.174531E+02

1.646037E+02

2.902883E+02

2.905903E+02

4.508246E+02

4.515298E+02

6.945689E+02

6.953026E+02

8.685333E+02
9.752645E+02

9.752699E+02

1.343024E+03

1.344180E+03

1.466313E+03

1.569195E+03
1.9129 !4E+03

1.918371E+03

2.025981E+03

2.446537E+03

2.446840E+03

2.458828E+03
2.742675E+03

2.971822E+03

3.918531E+03

3.918534E+03

4.451851E+03

6.261906E+03

8.528055E+03
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TABLE4

Natural Frequencies for NASTRAN Demonstration

No. D03-08-1A (Without Any SUPORT DATA) Modified

to Use the Procedure Described in the Paper

Computed

Mode

No.

1

2

3

4

5

6

7

8

9

10

11

12

Corresponding

Mode No.

in Table 3

9

10

11

12

13

14

25

26

27

28

39

40

Cyclic

Frequency

(Hz)

2.447569E+01

2.682217E+01

6.154903E+01

7.034309E+01

1.133579E+02

1.174531E+02

1.343024E+03

1.344180E+03

1.466313E+03

1.569195E+03

4.451851E+03

6.261906E+03

Subcase in Which

Computed

(See Appendix C)

First

First

First

First

First

First

Second

Second

Second

Second

Third

Third
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RANDOM VIBRATION ANALYSIS

OF SPACE FLIGHT HARDWARE USING NASTRAN

S. K. Thampi and S. N. Vidyasagar
GE Government Services

1050 Bay Area Blvd.
Houston, TX 77058

During liftoff and ascent flight phases, the Space Transportation System (STS)
and payloads are exposed to the random acoustic environment produced by
engine exhaust plumes and aerodynamic disturbances. The analysis of
payloads for randomly fluctuating loads is usually carried out using the Miles'
relationship. This approximation technique computes an equivalent load factor
as a function of the natural frequency of the structure, the power spectral density
of the excitation, and the magnification factor at resonance. Due to the
assumptions inherent in Miles' equation, random load factors are often over-
estimated by this approach. In such cases, the estimates can be refined using
alternate techniques such as time domain simulations or frequency domain
spectral analysis. This paper describes the use of NASTRAN to compute more
realistic random load factors through spectral analysis. The procedure is
illustrated using Spacelab Life Sciences (SLS-1) payloads and certain unique
features of this problem are described. The solutions are compared with Miles'
results in order to establish trends at over or under prediction.
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INTRODUCTION

During the past decade, the U.S. Spacelab program has made significant
contributions to the advancement of space exploration and research. The
Spacelab is a reusable laboratory that is carried in the cargo bay of the Space
Shuttle. Experiments in several different disciplines such as astronomy, life
sciences, and material science are accommodated in this modular laboratory
for various shuttle missions. The module also contains utilities, computers, and
work areas to support the experiments. The experiment hardware is mounted in
instrument racks located on either side of the module, in overhead lockers, or in
the center aisle, as shown in Figure 1.

During liftoff and ascent flight events, the Shuttle and its payload are exposed to
the acoustic environment produced by engine exhaust plumes and
aerodynamic disturbances. Random vibrations are created by the response of
the module shell to the acoustic noise inside the cargo bay. The vibrations of
the shell are transmitted through the support structures (racks, mounting frames,
etc.) to the payload equipment. The vibration levels that the equipment has to
withstand depend on its own dynamic characteristics and its location inside the
Spacelab. The equipment and its structural interfaces must be analyzed for
these random loads in order to ensure the integrity and flight worthiness of the
system.

The analysis of flight hardware for random loads often relies on approximate
formulations like the Miles' relation (ref. 1) to generate limit load factors for
structural design. Due to the assumptions inherent in Miles' equation, the
random vibration criteria developed through this approach tend to be over-
conservative. In such cases, the results can be refined using alternate analysis
techniques like time domain simulations or frequency domain spectral analysis.
This paper describes the use of NASTRAN to perform spectral analysis to
establish more realistic design loads. The procedure is illustrated using the
Neck Chamber Pressure System (NCPS) assembly which will be flown on the
Spacelab Life Sciences (SLS-1) mission.

ANALYSIS BASED ON MILES' EQUATION

For a lightly damped single-degree-of-freedom (SDOF) oscillator subjected to
random excitation through its base motion, Miles' relation is used as follows.

_/l-INr= 3 2 fn A Q (1)

Nr is the limit random load factor (g units), fn is the resonance frequency (Hz) of
the SDOF system, A is the power spectral density (g2/Hz)of base acceleration at
the resonance frequency, and Q is the dynamic magnification factor at
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resonance. The quantity under the square root represents the mean square
acceleration response and the factor 3 indicates the 3-sigma probability of
occurrence, i.e., the probability of exceeding Nr is 0.26%.

The mean square response is the area under the response spectral density
curve and is given by

<u2> = j" S((o)IH((o)l 2 d(o (2)

where H((o) is the transfer function of the system, S ((o) is the base acceleration

spectral density function, and (o is the frequency in radians. The derivation of
Miles' relation is based on the following simplifying assumptions for evaluating
the integral in Eqn (2).

1) The actual spectral density of base excitation, S (co), is a slowly varying
function in the vicinity of resonance. It can be conveniently approximated by a

constant or white-noise spectral density, A = S (COn), for computing the mean

square response.

2) Only the excitation energy contained within the system's bandwidth is
transmitted. The rest is filtered away by the system and does not contribute to

the mean square response.

These assumptions are valid in the case of lightly damped systems with

damping factor _ << 1. For such systems, the function IH((o)[ 2 is very sharply

peaked at co = (On, and reduces to half its peak value at a short distance, 2F,(on,

on either side of the peak. This distance, called the half power bandwidth, is
very narrow for lightly damped systems. With the assumptions mentioned
above, the integral in Eqn. 2 can be approximated by a rectangular area with
base equal to the bandwidth and height equal to the product of the constant
value of excitation spectral density and the peak value of transmittancy. This
gives

I-[ fnAQ (3)<u2> " _-

from which Miles' relation follows.

In order to use Miles' relation for the analysis of flight hardware, the natural
frequency of the equipment is first determined through analysis or test. The
input random excitation spectrum for the equipment is then determined as a
function of its location, its mounting configuration, and its mass. The input
excitation spectrum has been established using data from previous flight or
ground tests and is provided in the Spacelab Payload Accomodation Handbook
(ref. 2). The spectral density at the resonance frequency of the component is

found from this data. The dynamic magnification factor at resonance Q = 1/2 _,

is indicative of the system damping and is determined experimentally. For
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components mounted on isolators, Q is determined from the manufacturer's
data on the isolator mounting. These values are substituted in Eqn (1) to obtain
the design random load factor, Nr. As the random vibration environment occurs
simultaneously with other load environments during various mission phases,
the estimated values of N, are combined with the appropriate quasi-static,
thermal, pressure, and crew-induced load factors to generate design load cases
for component analysis.

Due to the assumptions inherent in Miles' relation and the idealization of the
component as a single-degree-of-freedom resonator, the computed random
load factors will be approximate. They tend to be overly conservative,
especially when the natural frequency of the system is close to the peak
frequency of the excitation spectrum. When the predicted random loads are
unreasonably high, they lead to difficult design problems and alternate
approaches are necessary to refine the random load estimates.

ANALYSIS BASED ON SPECTRAL ANALYSIS

The dynamic behaviour of large structural/mechanical systems can be
adequately predicted only by multi-degree-of-freedom (MDOF) models. For
linear MDOF systems, the dynamic characteristics are specified by a matrix of
transfer functions, [H], whose elements Hjkrepresent the ratio of steady-state
response at point j to a sinusoidal excitation at point k. For displacement
response

[H(co)]= [-[M] co2+ i[B] co+ [K]]-1 (4)

where [M], [B], and [K] represent the mass, damping, and stiffness matrices of

the discrete model and co is the excitation frequency.

The response of linear MDOF systems subjected to random excitation can be
computed using well-established spectral analysis techniques. According to
the theory of random vibrations, the response of a linear system with transfer

function [H(r.o)], subjected to a stationary random load {P(t)}, is given by

[Suu(O))]= [H(o))][Spp(O,))][H'(o.))]T (5)

where [Suu (co)] and [Spp(O_)] are the matrices of response and excitation spectral

density functions and * and T represent the complex conjugate and transpose
operations, respectively. These matrices will have real auto-spectral density
functions as their diagonal elements and complex cross-spectral density
functions as their off-diagonal elements. By integrating the area under the
response spectral density curve, the mean square response at any nodal point
in the model can be obtained. The foregoing development for mean-square
displacement response can be generalized to provide mean-square values for
other response quantities such as velocity, acceleration, or stress. It is only
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necessary to replace the transfer function matrix for displacement by the
corresponding transfer function matrix for the desired response. The
generalization also applies to the excitation which may be a point force, a
loading condition (i.e., an ensemble of applied forces that are perfectly
correlated), or enforced motion.

The analysis of flight hardware subjected to random excitation can be carried
out using the spectral analysis features of NASTRAN. A finite element model of
the component is created which can accurately represent all its dominant
modes in the excitation frequency range. The response calculations are carried
out in two separate functional modules. First, the transfer function of the system
corresponding to the desired response is computed in the Frequency Response
module and then, the power spectral densities and other response statistics are
computed in the Random Analysis module. The direct or modal superposition
approaches can be used to perform the frequency response analysis. For each
excitation source, Pk, the nodal response, uj, is determined at a series of user

specified frequencies, _. The ratio of output to input represents the transfer

function element, Hjk((Oi ). This is determined for each excitation source and the
transfer function matrix, [H], is assembled from the results.

In NASTRAN, random vibration analysis is treated as a data reduction
procedure that is applied to the results of frequency response analysis. The
inputs to the random analysis module are the frequency responses of desired
output quantities due to different load sources and the auto- and cross-spectral
densities of these random load sources. Each load source is referred to by a
separate subcase in the case control deck and their spectral densities are
specified as tabular functions of frequency in bulk data cards. If the sources are
statistically uncorrelated, only the auto-spectral densities need be defined. The
power spectral densities of response are calculated using Eqn (5) and the root-
mean-square (rms) response is evaluated by numerically integrating the area
under the spectral density curve. The results are printed and plotted for
specified degrees of freedom of the model.

As mentioned earlier, the random excitation applied to the structure could be a
force, an enforced motion, or some other general form of excitation. In the case
of Spacelab payloads, the random excitation is specified in terms of an
acceleration spectrum applied at the structural support points. The "large mass"
approach may be used to simulate this loading condition. This involves
lumping a fictitious large mass, Ma, at the degree of freedom in which the

acceleration is to be enforced. An applied force equal to Ma times the required
acceleration is also prescribed for that degree of freedom. The inertia force is
made so dominant through this operation that the resulting acceleration is very
close to the required value.
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ILLUSTRATIVE EXAMPLE

The development of random vibration load factors for flight hardware is
illustrated in this section using the Neck Chamber Pressure System assembly

(NCPS). This Life Sciences Laboratory equipment item is used to study the
effect of weightlessness on human cardiovascular control mechanisms and will
be flown on a future Space Shuttle mission. The NCPS assembly is composed
of an experiment enclosure which houses several components including a
central processing unit, a motor control unit, two motor driven bellows, and a
pressure gauge (Fig. 2). The assembly is mounted in an experiment rack using
two support rails which are attached to the front and rear rack posts on either
side. The front panel of the enclosure is bolted to the front rack post flanges at
eight locations. The whole assembly weighs 48 pounds, and the installation kit
including the slides, fittings, and fasteners weighs an additional five pounds.

A finite element model of the NCPS assembly is constructed using mostly plate
(CQUAD2 and CTRIA2) and bar (CBAR) elements. The model has a total of 206
grid points and 192 structural elements.The masses of internal components are
lumped at the respective centers of gravity, and stiff bar elements are used to
connect them to the attachment points. The fasteners are modelled using rigid
elements. Eigenanalysis was performed on the model with free boundary
conditions to verify that the model has six rigid body modes. The analysis is
repeated, with the rack-to-component interface points appropriately
constrained, in order to determine the flexible modes of the component. The
first twenty frequencies of the constrained model are shown in Table 1. An
inspection of the modal deformation plots and mass participation factors shows
that the first system mode in X direction is 80 Hz. The power spectral density of
the input excitation corresponding to this frequency is found to be 0.02 g2/Hz
from Figure 3. For a conservative estimate of Q = 10 for the dynamic
magnification factor, Miles' relation (Eqn 1) yields

Nrx = 15.04 g units (6)

Random load factors, N,y and Nrz, are computed in a similar manner.

Random load factors can also be determined through spectral analysis. The
computation of Nrx is described here for comparison with the Miles' approach.
The transfer function of the system is first determined by applying a unit
sinusoidal load in the X direction at each point where the NCPS interfaces with
the rack structure. The load is applied through the DLOAD and RLOAD cards
which in turn refers to DELAY, DPHASE, DAREA, and TABLED cards. For a

constant phase, unit sinusoidal input, the DELAY and DPHASE cards may be
omitted and a unit value specified for all frequencies on the TABLED card. The
input acceleration spectrum (Fig. 3) is specified through RANDPS and TABRND
cards. This random acceleration is enforced at all the interface points in the X
direction using the large mass approach. A fictitious mass, M,, about 1000
times larger than the existing grid point mass, is lumped at the interface X
degree of freedom using a CMASS2 card and an equal value is specified in the
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corresponding DAREA load card. This produces the desired acceleration which
can be verified by plotting the acceleration spectrum at the input points and
comparing it with Figure 3. If the agreement is not adequate, the value of Mais
increased until a good match is obtained.

The direct and modal solution techniques are used to carry out the response
calculations. The relative efficiency of the two approaches depends on several
factors including the number of modes retained in the analysis and the number
of response frequencies. The selection of these parameters always represents
a compromise between accuracy and efficiency. The frequencies chosen for
response computations should have good resolution in the vicinity of system
resonances in order to obtain reliable estimates of rms response. A total of 150
frequencies in the 0 to 500 Hz range are used for this analysis. The
specification of damping properties in the direct and modal formulations are
somewhat different. In the direct formulation, structural damping proportional to
the stiffness matrix terms is specified both on the material data cards and as an
overall uniform damping factor on the PARAM G data card. In the modal
formulation, the damping factor is specified as a tabular function of frequency
through the SDAMPING and TABDMP1 cards to represent the variation of
structural damping for different modes. A damping factor of 0.1 is used for this
analysis in order to be consistent with Q = 10 used in Miles' relation.

The set of output points at which the response power spectrum and rms values
are to be recovered must be chosen judiciously. The selection can be based on
the same criteria used for choosing an ASET (analysis set of dynamic degrees
of freedom); namely, the points should be uniformly dispersed throughout the
structure and should include all large mass items. A set of 12 output points
were chosen for the NCPS and the rms acceleration response at these points is
computed (Table 2). When these values are averaged and the 3-sigma
probability of occurrence criteria is applied, one obtains

Nrx = 10.67 g units (7)

This is almost 30% less than the value predicted using Miles' relation.

The rms response calculated using the direct and modal solution techniques is
summarized in Table 2. For the same number of response frequencies, the
modal solution required 350 seconds of CPU time with 20 modes included, 450
seconds with 40 modes, 600 seconds with 60 modes, whereas the direct

solution required 13160 seconds. The response spectrum at selected output
points on the model is shown in figures 4, 5, and 6. The solution obtained with
20 modes is clearly inadequate while the plots obtained using 60 modes and
the direct approach are virtually indistinguishable. The spectra
characteristically peak at 80 Hz which corresponds to the first X mode of
vibration. The effects of higher modes can also be seen in the spectral plots.
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CONCLUDING REMARKS

An alternate method of estimating random vibration load factors for design and
analysis of Spacelab payloads is presented. This method, based on spectral
analysis, yields more refined random load estimates at the expense of being
computationally more intensive than the Miles' approach. The computational
effort can be reduced by using the modal formulation rather than the direct
formulation for analysis.Significant reductions can be obtained in the random
load estimates using this method. While the actual reduction depends upon the
payload configuration being analyzed, reductions of 20 to 30% are typical. This
method could be used to resolve difficult design problems owing to
unreasonably high random load predictions by the Miles' relation.
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TABLE I. EIGENVALUE ANALYSIS SUMMARY

MODE

NO.

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

EIGENVALUE

5.606682E+04

8.630755E+04

9.900016E+04

1.228704E+05

1.483150E+05

1.896878E+05

2.301971E+05

2.535269E+05

3.989269E+05

4.230480E+05

4.433938E+05

4.683294E+05

5.100052E+05

5.928444E+05

7.732380E+05

7.972504E+05

8.693909E+05

9.891926E+05

I.I04014E+06

1.231224E+06

1.492994E+06

RADIAN

FREQUENCY

2.367843E+02

2.937815E+02

3.146429E+02

3.505287E+02

3.851169E+02

4.355316E+02

4.797886E+02

CYCLIC

FREQUENCY

3.768539E+01

4.675677E+01

5.007697E+01

5.578837E+01

6.129326E+01

6.931701E+01

7.636072E+01

5.035146E+02

6.316066E+02

6.504214E+02

6.658782E+02

6.846459E+02

7.141465E+02

7.699639E+02

8.793395E+02

8.928888E+02

9.324113E+02

9.945816E+02

1.050721E+03

I.I09605E+03

1.221881E+03

8.013683E+01

1.005233E+02

1.035178E+02

1.059778E+02

1.089170E+02

1.136599E+02

1.225435E+02

1.399512E+02

1.421077E+02

1.483979E+02

1.582926E+02

1.672274E+02

1.765992E+02

1.944685E+02
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TABLE II RMS ACCELERATION RESPONSE SUMMARY

GRID

POINT

5059

5O8O

5056

5077

5076

5073

5094

5097

5193

5204

5205

5042

LOCATION

Rear Left

Side Panel

Rear Right

Side Panel

Front Left

Side Panel

Front Right
Side Panel

Top Left
Rear Panel

Top Left
Front Panel

Top Right

Front Panel

Top Right
Rear Panel

M/C Unit

CPU Unit

M/C Mount

Front Panel

MODAL SOLUTION

20 MODES

(g)

2.07

2.06

2.47

2.47

2.08

2.24

2.24

2.08

2.07

2.81

2.12

2.47

40 MODES

(g)

3.50

3.97

2.47

2.47

4.53

2.48

2.48

4.89

4.33

3.89

4.03

2.47

60 MODES

(g)

3.52

3.99

2.49

2.49

4.58

2.87

2.87

4.91

4.46

3.95

4.04

2.49

DIRECT

SOLUTION

(g)

3.52

3.98

2.50

2.50

4.58

2.88

2.88

4.91

4.46

3.95

4.03

2.50

Average 2.26 3.46 3.55 3.56

I00
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FIG. I. TYPICAL SPACELAB CONFIGURATION
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OBTAINING AN EQUIVALENT BEAM

THOMAS G. BUTLER

BUTLER ANALYSES

In modeling a complex structure I was faced with a

component that would have logical appeal if it were modeled as a

beam. It was a mast of a robot controlled gantry crane. The

structure up to this point already had a larqe number of degrees

of freedom, so the idea of conserving grid points by modeling the

mast as a beam was attractive. I decided to make a separate

problem of the mast and model it in three dimensions with plates

then extract the equivalent beam properties by setting up the

loading to simulate beam like deformations and constraints. The

results could then be used to represent the mast as a beam in the

full model. This seemed to be a straight forward approach, but

it was sufficiently challenging that it merited publishing a

paper on this topic.

The endeavor is to obtain the area A, the area moments of

inertia Z1 and Z2, and torsional area moment of inertia J of a

prismatic beam that would be an equivalent of the crane mast over

its full length. The detailed model involved about 4500 uncon-

strained degrees of freedom. The mast structure was essentially

a hollow steel tube of square section with a cylindrical indenta-

tion along its length on one surface only. Complications that

made it difficult to estimate equivalent properties analytically

were the placement of two types of interior partial shear stiff-

eners at regular intervals along its length. These two different

types of shear stiffeners alternated on opposite sides from each

other most of the length. This posed no difficulty to model
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'BTAINING°A_,EQUIVALENT BEAM

elastically in a three dimensional model. The interesting phase
is the loading of the 3-D model in order to simulate beam action.

To put the _roblem in perspective, review for the momen ",

the definition of beam stiffness.

DEFINITION: Beam stiffness is the array of forces pro-

duced at the six degrees of freedom on both ends when a

single degree of freedom at one end is deformed a unit

amount while enforcing all other eleven degrees of

freedom at both ends to be zero.

But the Bernoulli Euler formulation of the beam as used in finite

element analysis programs does not faithfully follow this

prescription of stiffness to the letter. For example, when one

end is displaced a unit transversely, action is assumed to occur

in - plane only. Diagrammatically the boundary conditions of the

centroid of the B.E. formulation are indicated in the sketch.

Note that the length remains invariant, because its transversely

deformed end is not constrained in the axial direction. In

effect, with this B.E. approach, the end position contracts when
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OBTAINING AN EQUIVALENTBEAM

bending deformation occurs.
in the sketch.

This is shown in exaggerated fashion

i

i

....-I

If the length is not allowed to detorm, Poisson deformation does

not occur and therefore needs no constraining force to inhibit

Poisson deformation. But if the true definition of beam stiff-

ness were adhered to in the finite element beam, the axial posi-

tions of the ends would be held to zero displacement and the beam

would lengthen as transverse deformation occurs. Such axial

stretching would result in Poisson contraction in both transverse

directions. But if transverse translational deformations were

held to zero, as the definition of stiffness demands, such con-

straints would exert forces to prevent Poisson contraction. For

instance, the transverse forces at the end of a solid beam of

square section with a full set of constraints applied would

appear as sketched.

--4-----

! I

i i

! 1

i i
t !

...._

p )sscr/
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OBTAININGAN EQUIVALENTBEAM

The dilemma now is to try to define what kind of equivalence
should be sought. If A, Ii, I2, and J were obtained with true

stiffness constraints, would it be proper to operate as an

equivalent beam according to those entries on the property card,

so as to exclude bendlnq/axial coupling even though such action

was present during the sample run? Or would it be more proper to

use only B.E. conditions to get the properties that will used as

a B.E. beam? If the latter were chosen, the question arises as

to how faithfully we would be representing equivalence to the

true structure. Having some doubts as to how to proceed, I

modeled the constraints in two different ways; with full end

constraints and with B.E. end constraints and compared the

results. The sketch shows the constraints imposed for the two

models. One of the things to consider in the B.E. simulation is

that the theory requires planes to remain plane in bending.

.<..E_I_L/___ I ,<,
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OBTAINING AN EQUIVALENTBEAM

The next question is: After constraint forces are
measured, will it be acceptable to derive sectional properties by
substituting into the formulation based strictly on B.E.? That
is to say, should the stiffness forces obtained on the left be

equated to the B.E. formulas on the right? Just enough of the
matrix on the right is shown to illustrate the problem.

KII KIT
K22 K26 K28 K2C

K33 K35 K39 K3B
K44 K4A

K53 K55 K59 K5B
K62 K66 K68 KCC

EA/L
12EI /L 3

z

6EI /L 2
z

12EI /L 3
Y

GJ/L.

-6EIy/L 2

Not having any reference to use for the fully

beam I chose to use B.E. formulation to evaluate sectional

properties for both types of modeling.

coupled

The next question is: After accepting B.E. formulation,

what basis should be used to reconcile differences in results of

the methods? The reconciliation method is to use an estimation

the shear panelsof the computed value of the section without

present as per the dimensions in the sketch.

Z4

ZJ,ZK

III



OBTAININGAN EQUIVALENTBEAM

COMPARISONOF PROPERTIESDERIVEDFROMMODELSOF DIFFERENT
CONSTRAINTSVS MANUALCALCULATIONS

SOURCE A I II I If/ i J

FULL CONSTRAINTS

B.E. CONSTRAINTS

MANUAL

36.72 I 2,444.47 I 2,605.14 I INVALID

I I I

36.66 I 728.63 I 853.62 I 600.19

I I I

35.96 i 2,541.82 I 3,517.62 I 4,710.60

This exercise had some unexpected results. The whole

purpose of the exercise was to get an equivalent beam by using a

full 3-D model instead of making an analytical estimate because

of the uncertainty in being able to represent the effect of the

partial shear panels correctly. One expects that the effect of

the shear panels is to stiffen the steel tube, but the 3-D re-

sults showed less stiffness than the manual :heck which neglected

the panels. Why?

In going back to examine the axial displacements in the

3-D model using the B.E. constraints, it indicated that the end

faces tilted instead of remaining perpendicular to the undeformed

centroidal axis as the B.E. theory requires. The total burden of

meeting the requirement of zero slope at the displaced end was

put on the QUAD4 elements which formed the side panels of the

steel tube. That is; the open ended tube had two surfaces that

could carry such bending and two surfaces unable to carry

in-plane shear about their normals. Even those that picked up

such bending couldn't transmit this moment to the QUAD's on the
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OBTAINING AN EQUIVALENT BEAM

perpendicular surface, so an inadequate

produce a net slope of zero at the centroid.

points displace axially they were in no

couples to satisfy the moments for zero slope.

model with the B.E. constraints produced

sectional properties in bending and torsion.

moment developed to

By letting the end

position to create

That is why the

inadequately stiff

Going back to the model with fully constrained ends, the

explanation as to why this model was also inadequate for simulat-

ing an equivalent beam was this. Even though it did develop

couples which formed the resisting moment for zero end slope by

holding the axial displacements to zero; it still felt the defi-

ciency of moments about the normals of side panels. In effect

membrane action on corner displacements alone was not sufficient

to represent the true structure without the help of the existing

-- but unrepresented -- in plane shear from moments about the

normals of the panels.

In the case of torsion the fully _onstrained model was

invalid because it developed local equilibrium at the end under-

going unit rotation. The unit rotation about the axial direction

for every end grid point was inhibited by the translational

d.o.f.'s being held to zero. The deformation became a scalloped

pattern instead of a uniformly rotated face. Representation of

torsion with the B.E. model was also inadequate because it re-

quired, but didn't get, the assistance of the panels on all four

sides to carry the rotation about their normals.

Does this mean that if no attempt were made to model the

mast as an equivalent beam, but a full 3-D model were used, that

the 3-D model would be invalid? Not at all. What it shows is

that the 3-D model is ineffective in trying to conform to the
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OBTAININGAN EQUIVALENTBEAM

requirements of an equivalent beam representation. If a full 3-D
plate model were used in the complete representation of the crane

structure, good results would be obtained.

Since the attempt is to economize on the size of the

model, a better way to achieve the same results is to use sub-

structuring and condense the mast to equivalent end boundary and

intermediate mass points.

The spirit in _hich this paper is presented is to publish

failures as well as successes to help analysts avoid retracing

the ground that has already been plowed.
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Low Velocity Impact Analysis with NASTRAN

Daniel A. Trowbridge
Analex Corporation

Fairview Park, Ohio 44126

Joseph E. Grady and Robert A. Aiello
NASA Lewis Research Center

Cleveland, Ohio 44135

ABSTRACT

A nonlinear elastic force--displacement relationship is used to calculate the
transient impact force and local deformation at the point of contact between impactor and
target. The nonlinear analysis and transfer function capabilities of NASTRAN are used to
define a finite element model that behaves globally linearly elastic, and locally nonlinear
elastic to model the local contact behavior.

Results are presented for two different structures: a uniform cylindrical rod
impacted longitudinally; and an orthotropic plate impacted transversely. Calculated
impact force and transient structural response of the targets are shown to compare well
with results measured in experimental tests.

_TRODUCTION

Aerospace structures are subjected to impact loading from a variety of sources,

including dropped tools, runway debris, and munitions. In some advanced materials, even
low velocity impact can cause significant structural damage. Therefore, development of
accurate means of calculating structural response due to impact loading can be of critical
importance. In this paper, a computational technique is developed to predict the dynamic
response of a structure to low velocity elastic impact.

Structural damage due to impact invariably initiates in the immediate vicinity
of the impact. Therefore, it is important that the local stress field in the region of contact
be calculated accurately. Hertz [1] derived an elasticity-based force---displacement
relationship that describes contact between two elastic bodies. The Hertzian contact law is

given by:

F = K (1)

where

F ._.

K =
elastic contact force
contact stiffness

exponent
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• k

#

and

a = relative displacement (indentation) between impactor and target
= ui - ut (i = impactor, t = target)

The exponent n was shown in reference [1] to have the value of 3/2.
applications such as this; F, u, and a are all time---varying.

In dynamic

During low velocity impact, where impact damage is confined to the area
immediately around the point of contact, areas of the structure remote from the impact
may still deform in a linear elastic manner. An efficient finite element model, therefore,
would combine a linear elastic model of the global structure with a non-linearly elastic
behavior at the point of contact. The nonlinear force---displacement relationship in
equation (1) is incorporated into a linear elastic finite element model (MSC/NASTRAN
transient solution 27, COSMIC/NASTRAN transient solution 9) by using a NASTRAN
transfer function definition and nonlinear analysis capability. In the following section, the
Hertz contact law is discussed in addition to a method of incorporating it into NASTRAN.
Impact loading of two different structures is then analyzed. The first problem is a
one-<iimensional rod of uniform cross section impacted longitudinally. The second is an
orthotropic plate under transverse impact.

CONTACT LAW

In reference [2] Hertz derived the force---displacement

sphericalisotropicelasticbodies of radius rl,and r_in contact:

F = K a 3/_

where

relationship for two

(2)

] rl r_ kl k2K = rl+ r2 kl + ks (3)

is the contact stiffness and

E ,

k. - z i= 1,2
z 1 --u_

(4)

where E i and vz are the Young's modulus

subscripts 1 and 2 refer to each of the spheres.
target, (3) simplifies to

and poisson's ratio, respectively, and the

When a spherical impactor contacts a flat

ki ktK= + (5)

where i and t represent the impactor and target respectively and the kt and ki are given by:
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kt Et (6)= 2

1 -- vt

ki -- Ei (7)
2

1 -- vi

In equation (2), a is the local indentation at the contact point, shown
schematically in figure 1. We have:

a = ui- ut (s)

where a is the relative local displacement between impactor and target at the point of
contact.

NASTRAN Implementation

The non-linear local behavior was incorporated into the NASTRAN finite
element model as follows:

The impactor is modeled as a lumped mass just touching the target at t=0 and
with an initial velocity towards the target. The difference between the displacement of this
lumped mass and the displacement of the target is the indentation, a. The modeling of the
contact between impactor and target is performed by utilizing the transfer function card,
TF, and the nonlinear force card, NOLIN3. The TF card acts as a dynamic multipoint
constraint, relating the displacement, velocity and acceleration of several independent
degrees of freedom to a dependant degree of freedom. In the work discussed here, only
displacement relationships were used. On the TF card coefficients of the following

equation are specified [3].

(B 0 + BlP + B2p2)Ude p

n
• j J

+ _(A_+ AJlp + A2p2)Uin d

j-'l

= 0 (9)

where

B0, B_, B 2 = the coefficients for the dependant degree of freedom

J AJl, JA0, A s = the

Ude p = the

J
Uin d = the

n = the

coefficients for the independent degrees of freedom

displacement of the dependant degree of freedom

displacements of the independent degrees of freedom

number of independent degrees of freedom

p = the differential operator _, and p_ =

For this analysis, the equation would appear:
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(1.0)Uextrapoint -{- [(--1.0)Uimpactor-{-(1.0)Utarget]= 0 (10)

that is

n =2

• j
B,,Bm, AJ,,A 2 = 0.0 (j=l,n)

B o = 1.0

!

A o =-i.0

2

A o = 1.0

The resulting equation defines the indentation at every time step and assigns the value to
an EPOINT. The EPOINT, or extra point, is used as a nonstructural variable that
provides a place to store the value of the indentation. The EPOINT is provided as input
to the NOLIN3 card.

The NOLIN3 card is the means of applying the time-dependent nonlinear load
based on the indentation. The NOLIN3 card has the form:

P(t) = [

SCxCt))A, xCt) > 0

o , x(t) _<o
(11)

where

P(t) = is the resulting nonlinear force

S = is a scale factor

x(t) = is the displacement or velocity of a degree of freedom

A = is an amplification factor

In modeling of the impact, we define x(t) to be the displacement of the EPOINT, S to be
the Hertzian stiffness, and A to be 3/2, as given in equation (2). Recall that the
displacement of the EPOINT is really the indentation as obtained from the TF card. The
resulting function then has the form:

P(t) =

K(aCt)) 3/2, a_t) > 0

o , _<o
(12)
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Note that when a is less than or equal to zero (ie. the target and the impactor are out of

contact) then the force is also zero. Two NOLIN3 cards are used, one to apply the impact
force to the target and the other to apply the same force to the impactor in the opposite
direction of its initial velocity. This methodology allows the impactor to slow with
increasing impact force and eventually to unload the target as the impactor begins to travel
in the opposite direction, away from the target.

RESULTS

One Dimensional Rod

The first problem analyzed is the longitudinal impact of a steel ball on a long
aluminum rod of constant cross section. Geometry and material properties of the impactor
and target are given in figure 1. The problem was modeled using 144 1-D rod elements
with each grid point having a single longitudinal degree of freedom. Two more degrees of
freedom were used to model the impact dynamics, resulting in a total of 147 degrees of

freedom. A single lumped mass with an initial velocity was used to represent the impactor.
The Hertzian force-displacement relationship in equation (1) was prescribed using the
NASTRAN NOLIN3 card, as shown in the example input deck in the appendix.

The calculated impact force history compares well with experimentally
determined values [4], as shown in figure 2. The calculated strain response at the midpoint
of the target bar is compared with measured values in figure 3. The sign reversal of the
second pulse is caused by the reflected tensile stress wave generated by the incident
compressive wave reaching the free end of the bar [5].

Some insight into the timing and the location of the impact-induced structural

failure can be gained by tracking the distribution of energy in the impactor and the target,
as shown in figure 4. The energy balance can be expressed as:

Ut = KEi + SEi + KEt + SEt (13)

where

Ut =

KEi =

SEi =

KEt =
n-I

1=

SEt = strain energy of target

n-I
2

1=

total energy in system
2

impactor kinetic energy = 1/2 mv i

impactor strain energy = fF(a) da = 2/5

target kinetic energy

(n = number of elements)

(n = number of elements)

(14)

(15)
(16)

(17)
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The total energy in the system, Ut, is divided between the kinetic energy and
the strain energy of the target and impactor in a time--varying manner. Because damping
effects are not considered, the total system energy is constant and equal to the initial
kinetic energy of the impactor. The strain energy of the impactor is non---zero only during
the contact interval (0 < tC/L < 0.4, where t = time, L = the length of the bar, and C =
the wave speed in the bar) and peaks when the contact force is greatest, approximately
halfway through the contact interval. The kinetic energy of the impactor decreases rapidly
as the impactor slows during contact with the target. Eventually, at tC/L = 0.25, the
impactor velocity (and therefore its kinetic energy) decreases to zero and the elastic
rebound begins. The kinetic energy of the impactor never returns to its initial level
because approximately 80% of the energy has been transferred to the target in the form of

strain energy and kinetic energy. The strain and kinetic energies in the target both
increase rapidly during the contact with the impactor and remain constant after contact
has ended (tC/L > 0.4). Both strain and kinetic energies maintain equal and constant

values until the compressive stress wave generated by the impact reaches the far end of the
free-free bar (tC/L = 1.0). A tensile stress wave is generated when the compressive pulse
reflects from the stress free boundary [5]. The superposition of the incident and reflected
pulses momentarily leaves the bar stress-free which causes the strain energy to decrease to
zero. The kinetic energy simultaneously increases, maintaining a conservation of total
energy. The reflection process is repeated at tC/L = 2.0, when the reflected pulse returns
to the other end of the bar. Similar energy dissipation diagrams may prove useful in
analyzing dynamic failure of more complex structures.

Composite Plate

The low velocity transverse impact of a composite plate made from Scotchply
1003 prepreg [6] is now analyzed. The problem is depicted schematically in figure 5, and is
described in detail in references [7,8]. A modified Hertzian contact stiffness has been
proposed [9] for application to composite materials. Specifically, equation (6) is replaced
by

kt = E3zt (18)

where E33 t is the transverse modulus of the plate. Plate membrane and bending stiffness
material properties were calculated using the COBSTRAN (Composite Blade Structural
Analyzer) computer code [10] which calculates elastic moduli of composite materials from
known constituent properties and laminate ply orientations.

A uniform square mesh of QUAD4 elements was used to model the 15.24 cm x
15.24 cm (6 in ,, 6 in) target plate. A mesh convergence study was performed to establish
the degree of mesh refinement necessary to arrive at a numerically converged solution.
Three different meshes were considered, 25 ,, 25, 49 . 49, and 61 ,, 61 elements. Of these,
the latter two produced essentially the same strain response for a given impact velocity and
were therefore considered to be converged solutions. The results presented here were

therefore calculated using the 49 - 49 element model. Five degrees of freedom (Ux, Uy, Uz,
0x and 0y) were used at each nodal point, giving the model a total of 11510 degrees of
freedom. The problem was solved on a Cray XMP in 52 CPU minutes.
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The impactor used in the tests [7.8] was a uniform 2.54 cm (1 in) long,
blunt---ended steel rod of radius 0.047625 cm (3/18 in). In the analysis a contact radius of

0.047625 cm (_/l_ in) was assumed in the Hertzian contact stiffness calculations. The
calculated impact force history is shown in figure 6. Although no direct measurement of
the impact force was obtained experimenta_y, the contact time was measured [8] and found
to be 204 microseconds. This is in good agreement with the calculated result. Figure 6
also shows that a secondary impact occurs during the latter half of the contact interval (t
= 175 psec), probably due to the vibration of the target plate during contact with the
projectile.

The resulting displacement response of the plate is shown in figure 7, where it
has been assumed that no damage occurs in the target during contact with the impactor.
This assumption is valid based on the available test data. Ultrasonic C---scans of the
specimens after impact indicate that this level of impactor kinetic energy (10 Joules) is
very near the threshold energy level required to cause damage [8] in specimens of this
layup. As a result, very little damage occurs at this impactor velocity. The anisotropic
bending stiffness of the targe_ (figure 5) is evident from the elliptical displacement
contours, as the flexural disturbance travels faster in the stiffer direction (figure 7).

The strain response at gage A is compared to the calculated response in figure 8.
The two curves are similar in amplitude and duration but the calculated strain appears to
lag the measured values by approximately 25 microseconds. This may be due to the
difficulty in establishing experimentally the precise time at which contact occurs based on

strain gage readings taken at some distance from the point of contact. The comparison
shown in figure 9 for gage B likewise shows a time shift of approximately 25 microseconds
between the measured and the calculated response. The amplitude and duration of the
calculated strain response correlate quite well with the measured signal.

SUMMARY

A simple means of modehng low velocity, non---damaging impact using
NASTRAN was demonstrated. A nonlinear elastic contact model was included in the finite

element analysis using NASTRAN transfer function definitions and nonlinear analysis
capabihties. The same contact law was used to define the force-indentation relationship
for two different impactor/target combinations. Results in both cases showed that the
impact force and resulting transient structural response of the target compared well with
experimentally measured values.
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DAN TROWBRI DGE ANALEX - STRUCTRAL MECHANICS BRANCH

ID TRANS. LOAD
APP DISP
TIME 66
SOL 9
CEND

TITLE ,- COSMIC: TRANSIENT RESPONSE ANALYSIS: HERTZIAN IMPACT FF
SUBTITLE m 36" AL. ROD 5/8 STEEL BALL V_62.1 IN/S

LABEL m RO0 • < IMPACT
$ NONLINEAR LOAD
NONLINEAR ,,, 5
$ INITIAL CONDITIONS SET
IC- 1
TFL,,111
SPC ,, 4
TSTEP - 7
$ OUTPUT STUFF
SET 36 ,, 1,72.73.999.1661
NLLOAD ,, 36
STRESS(PRINT) ,- 36
DISP(PRINT) ,,, 36
BEGIN BULK

ooessoe jeoatnesesomoo*nmaoooseo J Jooe ooeeeososoot oeoloooesooeoosooomoeo

$ EXTRA POINT -, INDENTATION
EPOINT, 1001
GRID,g99, .-e.3125,e.6,e.e
GRID. 1..e e,e.e,e.e
-(144) ..(1).-. • (0.25) .--
CROD. 1. 1. 1. 2
-(143) .- (1) ,-.. (1) ,,(1)
$ LUMP MASS OF ]MPACTOR
coM_2,200,999.0,9.587-5.6.6.6.6,6.6., +CON2-2
+CON2-2,3. 745--6.. 3. 745.-6,,, 3. 745--6
$ MATERIAL PROPERTIES
PROD. 1.11.0. 196.6.14.--3.0.25
MAT1 .11,16.e+6, .6.33.2.5-4 .... -_AT 1-1
+MAT 1-1.35.0E6.36. eE6.27.0E6
$ BOUNDRY COND I T IONS
SPCl.4.23456.I.THRU.14S
$ RE}lOVE DEGREES OF FREEDO_ FRObl IMPACTOR

SPC1, 4, 25456, 999
$ TRANSFER FUNCTION TO DEFINE INDENTATION
TF. 111. 1661 .e.+1 .e .6.6 .e.6...+TF-1
+TF-1,999.1 ,-1 .e.e.e.e.e .... +TF-2
+TF-2.1,1,1 .e.e.e.e.e
$ TIMING
TSTEP,7,2566,2. e-7 , 25
$ LOAD DEPENDENT ON DISPLACEMENT OF IMPACTOR
NOLIN3. 5. 1. 1. 6.24.+6, 1001, 1. 1.5
$ SLOW DOWN IMPACTOR
NOL]N3. 5. 999. 1. --6.24-1-6, 1001, I. 1.5
$ INITIAL CONDITIONS: IMPACTOR VELOCITY - 62.1 IN/SEC
TIC. I .99g. I .e.e,s2. I
_NDOATA
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DAN TROWBR l DGE ANALEX - STRUCTRAL MECHANICS BRANCH

IO IMPACT.PLATE
APP DISP

TIME 120
SOL 27

CEND

TITLE - IMPACT OF PLATE 49X49 : CENTERED ELEMENT

SUBTITLE - TRANSIENT ANALYSIS: FIXED-FIXED: NO SYldMETRY

SPC,= !

IC-3

NONLINEAR =, 5

TSTEP - 1

TFL ,, 111

SET 15 - 999.2525,2526,2625.2626

NLLOAD - 15

SET 20 - 2525.3325.4125
STRESS - 20

BEGIN BULK

$ **** EXTRA POINT TO HOLD INDENTATION ****************************

EPOI NT. lee, 1

$ 0.** IMPACTOR *** 3/8 IN DIAMETER ***,***,*****************-*****
GRID.999, .e.e.e.e.-e. 1875

CONM2,2Be, 999.0,8. ess-5.e.e.e. 0.0.0,, +cON2-2

+cON2-2.7.459-6., 7.459-6.., 1.423-6

$ * ,. * • * • GRIDS AND CQUAD4 ELE3_ENTS DEFINING THE PLATE GO HERE ...
$ MATERIAL PROPERTIES... MAT2 CARDS GENERATED BY COeSTRAN

PSHELL. 1,101.0.15,201,1.0
MAT2,101,4.3E+06.2.9 E+05.-1.7E-03.2.8E+06 .-3.4E-02.5.7E+05.1.86-84. +A101

+A181,5.8E.-06.8.9E-06.5. eE-13

MAT2.201,5.7[+06,2.9 £+05.-1.9£.--04.1.4E+66 ,-3.8E--03,5.7E÷05
$ BOUNDRY COND I T IONS

SPCl, 1, 123456, 101, THRU, 150

SPC1, 1. 123456, ,$881, THRU, 5050

SPC1. 1. 123456, 101

- ,==.,,=., 100
,,48

SPC1. 1, 123456, 150

-.-.-.,100

,=48

SPC1, 1, 12456, 999

GRDSET ....... 6
$ TIME STEP INFO

TSTEP. 1.2009. 1.B--7. 10
$ LOAD DEPENDENT ON RELATIVE DISPLACE)4ENT OF IMPACTOR

NOLIN3. 5.2525, 3.+1.94,TH-5. 10001. 0. 1.5

NOLIN3. 5.2526, 3.+I.94.T>+5. 10001. 0. 1.5

NOLIN3. 5.2625. 3.+1.945+5. 10001. e. 1.5
NOLIN3. 5.2626, 3.+1.945+5. 10001, 0. 1.5

$ SLOW DOWN IMPACTOR

NOLIN3, 5, 999. 3,-7.779+5, 10001, 8, 1.5
$ TRANSFER FUNCTION TO CALCULATE INDENTATION

TF. 111. 10001,0.+1.0,00.0.00.0., .+TF-t
+TF-1.999.3.-1 .e.ee.e.ee.e .... +TF-2

+TF-2,2525.3.-I'e. 25. ee, e. Be. e .... +TF-3

+TF-3. 2526.3.+0.25.00,0.00.0 .... +TF-4

+TF-4.2625.3. +e. 25. Be. e. Be. e .... +TF-5

+TF-5. 2626.3..i.e. 25. Be. e. Be. e

$ INITIAL CONDITIONS: IMPACTOR VELOCITY - 1470 IN/SEC (122.5 FT/SEC)
T IC.3. 999.3.0.0. 1470.0
ENOOATA
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TRANSITIONING OF POWER FLOW IN

BEAM MODELS WITH BENDS

by

Stephen A. Hambric

Applied Mathematics Division (184)

1)avid Taylor Research Center

Bethesd-i, Ml) 20084-5000

/

Ng0- 4tf S

ABSTRACT

The propagation of power flow through a dynamically

loaded beam model with 90 degree bends is investigated ushT,q

NASTRAN and McPOW. The transitioni,g of power flow

types (axial, torsional, and flexural) is observed throughout

the structure. To get accurate calculations of the torsional

response of beams usfn£, NASTRAN, torsiona[ inertia effects

had to be added to the mass matrix calculation section of the

program. Also, mass e[fects were h_cluded in the calculation

of BAR forces to improve the continuiO, oJ power flow

between elements. The importance of including all O'pes of
power .[lo1,., in an analysis, rather than only flexural power, is

indicated by the example. Trv#zg to interpret power ,[lo_c
results that onh, consider /lexural components in even a

moderately complex proble:n _,ill resuB h_ incor:ec/

conclusions concerning the total power ./low field.

INTROI)UCTION

Methods for calculating power flows in dynamically loaded finite

element models using NASTRAN (Rigid Format 8 Direct Frequency
Response) and McPOW (Mechanical POWer) were developed previously, l

The power flow equations for beam elements derived in that paper included all

forms of dynamic energy propagalion: llcxural, longitudinal (or axial), and
torsional. The llexural waves were split into shear arid moment conlponents.

The majority of procedures cmploycd in other studies (sce the lisl of

references in ttambric 1) only considcr Ilcxural vibration in their calculations of

power flow. This can be dangerous if an analyst is investigating lhc cncrgy

propagation characteristics of a complcx structure. Though llexural vibration

is in most cases the dominanl response in a dynamically excited beam,

different kinds of propagation wi]l occur in struehlres with even a small degrcc

of complexity, Stlch as a simplc bcaln model will'/ 90-degrec bel_ds.
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Such a model is tested here using a frequency range spanning several

resonanccs and types of motion. Plots showing the contributions of the

diffcrcnt forms of power flow to tile total power travelling through the system

are shown, and illustrate the importance of all types of energy propagation to

the power flow method.

To improve the accuracy of both the finite clcment solution and the

power Ilow solution of the problem, a few modifications were made to

NASTRAN and McPOW. First, to show lhe importance of torsional power

flow, a capabilily Io calculate dynamic lorsional forces and corresponding

angular vclocilics is required. Therefore, torsional inertias were added to lhe

coupled mass matrix l'ormulation of the BAR clement. Also, since lhe beam

clement force calculation algorithm in NASTRAN considers only stiffness

cffccls, mass and damping eft'cots had to be added lo McPOW lo modify lhc
elemcnl forces.

Mi'TFH()I)OIX)GY

The procedure for solving for the power flow field in a linile elcmenl

lnode[ using NASTRAN and McPOW is"

1. Pxun Rigid I,'orlnat 8 (Direct l:lcquency Response) on a NASTRAN data

deck (using the AITI'ER statements shown in Ref. 1 to oulput force and

vctocily " .......... _ blocks to the ()UTPUT2 file). Coupled mass formulations

should always be used.

2. 1,tun McPOW using lhc binary clahl in the OUTPUT2 lile as input.

General Methods

A typical powcr llow cycle is shown in Fig. 1. The ligure shows an

arbitrary structure mounlcd Io a connecting structure by a spring and damper

couplin,,e. A dynamic load is applied, and energy flows into the structure at the

load point. The input power then llows througll the structure along multiplc

flow paths denoted by arrows whosc lengths represent power flow magnitudes.

As the energy llows toward the mounting, it is dissipated by material dalnping

arid sound radiation into a surrounding lncdium, and the flow arrows shorten.

The flow and dissipation processes continue until the remaining energy exits

tile structure lhrou,,h the motmtina and flows into the connecting structure.

Though only one power entry point and onc exit point are shown in this

drawing, multiple loads _llld InotlntillgS may exist. A classic lexl which

describes lhc llow of strucltlrc-bornc sound is thc bool< by Cremer, llcckl, and

Ungar. e

The structural dy,mmics problem may be solved using' NASTRAN. The

structure may be modeled with various clemen! types; mountings are modelcd

with scalar spring, damping, and mass elements. Constraints and loads are

directly applied. The steady-slate response for the model is solvcd for a given

cxcilalion frequency, and the power l]ow wlriables arc calculated.
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Power Flow

Powcr Dissipation

Pin

Fig. I. Sample Power l"h)w 1)iagram.

Power is dcfincd as lhe limc-avcraged producl of a force wilh ll_c in-

phase component of velocily in tile direction of the force. For timcqmrmonic

analysis, where complex lmml)ers are used, lhis calculation may be visualized

as taking the dot producl of lhe force and velocity phasors. (Thcre is no factor

1/2 in lhe following powcr equations if tile assumption thai forces and

velocities are "effective" values rather than amplitudes is made. With this

assumption, consistency is maintained, and there is no mixing of efl'ective and

peak quantities in this formulation.)

Multiplying one complex numbcr by the in-phase parl of anothcr

complex number is the same opcration as lnultiplying the lirst nulnbcr by the

complex conjugate of the other numbcr and taking the real part of thc rcsult.

Thcrefore a general formula for power flow in a structure is

Power = Re_,l IFv *1, (l)

where

F = force, aim

v* = complex conjugate of velocity.
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Power Flow Equations

The equations for power flows in BAll elements are repeated here. A

diagram of the BAR element and its NASTRAN force output conventions is
shown in Fig. 2, where Plane 1 is vertical and Plane 2 is horizontal.

Mla

Vl

Plane 1

Vt

b T

x

M2a

V_
Plane 2

V,.)

rl eb> x

Fig. 2. The BAR Element

Since a beam is a one-dilnensional element, energy ltows in only one direction:

in the local x direction, or along the length of the beam. The total power flow
for a beam element is

• ' * * * • , "* -. ".Px = Real [ - (I,xvx+Vxvy÷V2vz+l 0x-M20y+Ml0z)],

where

F×
V1
V-,

T

M2

M1

vi

= axial force,

= shear force in y direction,

= shear force in z direction,
= lorsion about x,

= bending momenl about y,

= bending momcnl about z,
= translalional velocities in direction i, and

(2)
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t)i = rotational velocities about axis i.

The negative sign on tile result comes from force and displacement direction

conventions for the element. The negative sign on the M2 term reflects the

NASTRAN force 9utput convention. In Fig. 2, M2 is shown as positive in the
-,

opposite sense to 0y. Therefore, M20y is opposite ill sign Io the other power
llow components.

NASTRAN Modifications

Torsional Inertias

NASTRAN currently does not consider lorsional inertias in its beam

element fornmlation. Therefore, all torsional results (angular displacements

and torques) are based on stiffness only, and are essentially those of a static

problem solution. To remedy this, torsional incrtias were added to the

coupled mass formulation. At the point in NASTRAN where the basic
element mass matrix is formed, no consideration is given lo beam offsets or

beam orientation; all mass coeflicients (as well as stiffness) are calculated in

the local beam coordinate system.

The torsional mass moment of inertia of a beam is p I_, Jx/2, where p is

the mass density, L is the beam length, and J_ is the polar area moment of
inertia. In the standard consistent mass malrix for a beam, 3 lhis wdue is

broken up into 2/3 and 1/3 colnponents; 2/3 of the wllue is placed at the

diagonal, and 1/3 is placed at the coupled degree of l'reedom (the node on the

other end of the beam). The same fractions are used for the translational, or
axial masses. In NASTRAN, however, the coupled mass formulation uses an

average of lumped and consistent formulations to reduce error. This average

changes the components to 5/6 and 1/6 of the total value. Since these values

are currently used for the axial masses in NASTRAN, they were also used for
the torsional inertias.

Element Force Calculations

NASTRAN element forces are currently calculated by multiplying

elelnent stiffness matrices by element displacement vectors. Both damping

and mass effects are ignored. The damping in a stiffness element is actually in

the form of a loss factor, which generates a complex stiffness matrix. All

stiffness terms are multiplied by 1.0 + b/. For most dynamic analyses,

neglecting the i*l term is acceptable since it is generally small. For a power

flow analysis of a highly reverberant structure, however, ignoring the loss
factor is disastrous. In a hi,.zhlv reverberant structure, the force and velocity at

a given point are close to 90 degrees out of phase. Since power flow is defined
as the clot product of these two components, a small change in the phase of

the force has large effects on the calculated element powers.

Neglecting the clelnent mass matrices, whose componenls arc several
orders of magnitude less than those of the stiffness malrices, has less drastic
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effects on the power flow solution, since at low frequencies the masses will

have little effect on the force calculations (the element mass matrix is

multiplied by -4, 2 to take the second time derivative of the corresponding

displacements). However, when high frequency analyses are performed on a

model, the --c_ 2 multiplying factor bccolnes more significant, and neglecting
the mass contributions will cause some error in lhe force calculations. Errors

in clement forces cause errors in element power flow:..

Including these missing effects in NASTI(AN is complicated the fact

that the element force calculation algorithm splits the problem into real and

imaginary paris. The element stilTness matrices are nmltiplied by the real

parts of the displacelnenl vectors to calculate real force components, and thc

process is repeated for the imaginary components. Adding an imaginary term

to the stiffness matrices causes new terms to be gcncraled in the multiplication

(imaginary stiffness x imaginary displacemcnt and imaginary stiffness x real

displacement). There is also no frequellcy dependence in lhe current

algorithm, since stiffness arc frequencyindependcnt. Mass matrices, hmvcvcl,
must be multiplied by the --_J- term mcnlioncd above, st) thcy l]ll.lS[ 1)c

recalculated for every frequency.

To avoid these complications, thc element force calculations were

temporarily moved to McPOW. The clement mass and complcx stiffness

matrices are recalculated on a local element level, and combincd with local

clement displacclncnls to solve for clement forces. A force vcclor wilh 12

entrics is the result; shears in the local y and z directions, moments about the

local y and z directions, axial forces, and torques are solved for at each grid

poinl. In NASTRAN only cight forccs are calculated, because only moments

are calculated at both ends of a beam elcmcnt. Beam powcr flows arc

therefore calculated at each end of the element using only the forces at that

end and the corresponding grid velocities. The average of the powers at the

ends is takcn to lind an clement power flow.

TI"ST PROBLEM

Prol)lem Statement

The beam model that was analyzcd is shown in Fig. 3. All three

sections have the same cross section and lnalerial properties. Dashpols

(DAMP2 elements) of value 106 were applied at the model's cad i, all six

degrees of freedom. A unit load was applied at the lop end o1' the model in

the longitudilml direction (along the - z axis) over a frequency range of 1 to 250

Hz swept in 1 Hz increments. The tinilc clement model consisls of 152

elements and 153 grid points. Grid and element lmmberiJlg starts at the left

end of Link 1 and proceeds up to lhe end of IAnk 3.

Using the local beam clement coordinalc systems shown in I"i,, ,3, lhc

following table of force balances at the corners (Link 3 to l,ink 2, l,ink 2 to

l,iuk 1) was generated.
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Y

)-
z

Each link 10 m long /
Cross Section Diameter = 0.5

Fe Itct

Y " 1 Link 1 Y2

x

z3

//n Y3

Link 2

x-,

E = 2.074 x 1011 N/m 2

u=0.3

_/= 0.02

Fig. 3. Test Problem Geometry

Link 3 Link 2 Link 1

X

T

Va

V2

Ma

M2

Vl

M2

V2

F×
T

M1

Vl

M2

Fx

V2

M1

T

The subscripts ou the shears and moments refer to the plane in which the

forces occur (sec Fig. 2). This table can be used to track the propagation of

power flow through the structure. For example, the longitudinal power input
to Link 3 will travel down the beam in axial waves to the first bend and

become shear power flow in the z direction in Link 2. This shear powcr will

interchange with monlcnl power along the beana (the sum of the shear and

moment components is the total flcxural power flow in the beam). Any shear

power thai exists at the lower end of Link 2 will transition to more shear

power in Link 1.
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Results and Discussion

The computed power input curve over the excitation frequency range is

shown in Fig. 4. The power input peaks correspond to wlrious resonances in

tile slructure. Most are flexural, but some axial and torsional modes influence

the power input curve. The longitudinal modes of Link 3 cause power input

peaks (at 190 Hz and above), as well as the torsional modes of lank 1 (at 151

IIz and above).

In this model, the power flow path is independent of frequency. The

total power must always llow from the input point at the end of IAnk 3 to lhe

dampers at the beginning of I,ink 1. This simplifies the interprelation of the

results, since the directions of total power flow are established.

The lypes of power llow in a given link are not so well-defined.

Whethcr the dominant path in a link is flcxural, axial, or torsional, depends on

the motion of the structure. Fig. 5 shows the lwo most common types of

motion paths for this problem. The displacemcut licld of l)iagram 1 c;ccurs

most often. The axial load applied to Link 3 drives the entire structure

forward and backward over a frequency cycle. The dominant power flow in

IAnk 3 is axial; the dominant power llow in lank 2 is flexural; and torsional

and llexural power flows are dominanl in Link 1, since the input load applies

both a torque and bending moment to lhe link.

In Diagram '_. of l:i,,_. 5 a different lype of motion is shown. The axial

load still drives tile upper half of the structure in lhe same direction, but the

Lower half moves in the opposite direction. This lype of motion is not what

one would expect in a static problem, but the dynamic characleristics of lhe

structure produce this type of motion in various frequency ranges.

Due to this motion path, the axial power flow travelling down Link 3

becomes flexural, torsional, and axial in I,ink 2. The torsional and axial

components appear because lhe link is twisted and slretched by the opposite

directions of motion of the two ends. The torsional power in Link 2becomes

flexural power in Phme 1 ill I,ink 1, and the axial power in Link 2 turns into

flexural power in Plane 2 in Link 1. The flexural power in Link 2 becomes

torsional and flexural power in lank 1 as before (l)iagram 1).

Considering these modes of power lransitioning, the power llow plots in

t:igs. 6-8 may be interpreted. I_:ach plot shows the contribulions of llexural,

torsional, and axial power flow as a percentage o17 lhc total power llow in the

center of each link.

Fig. g shows the power components in lank 3. Since the inpul power is

in the longitudinal direction, the majority of lhe power in this link is axial. At

certain frequencics, the percentage of axial power is greater than 100 percent.

The large axial percentage arises because at certain frequencies, reflected

waves carry power in the opposite direclion (toward the load). Three tlexural

resonances in the structure cause reflcclcd power just before 50 liz, along with
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Fig. 5. Dominant motion pallas for lest problem

five others right after 100 Hz. Between 200 and 250 Hz, some flexural and

torsional resonances cause more reflected powers.

Fig. 7 shows the power components in Link 2. The dominant type of

power is the flexural component in Plane 1, and is denoted by the solid curve.

This type of power field corresponds to the motion type shown in Diagram 1 in

Fig. 5. However at certain frequencies, the power flow pattern of Diagram 2

becomes dominant, and axial and torsional power become important. In most
cases, the axial power flows forward (away from the load point), and the

torsional power is backward (reflected toward the load point). These

tendencies occur at the same frequencies as the reflected power waves do in

Link 3 (shown in Fig. 8). This behavior indicates that the Itexural power in

Plane 1 and the torsional power cause reflected flexural powers in Planes 2 and
1 respectively in Link 3.

Fig. 6 shows the power distribution in Link 1. In this case, all power

components are positive, implying that the reflected power wavcs in Links 2
and 3 originate from the joint connecting Links 1 and 2. In Link 1, ltexure in

Plane 1 and torsion are the dominant compouents of power flow. Flexural
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motion ill Plane 2 and axial motion cause power peaks at the same frcquencies

observed ill Figs. 7 and 8, indicating the type of motion shown in I)iagram 2

ill l"i,'_. ._. A torsional mode in I.ink I accounts for the peak in the torsion

curve at 150 Hz, along with an input power peak at the same frequency (see

I:i,, 4).

In spile of lhe large variation in percentages of power types in the plots,

all the power curves add up to 100 percent, as expected. In addition, the total

power llow in the structure at all frequencies is at a maximum at the load

poinl, and Slnoothly dccrcascs lo a minimum at the conncclion point to the

dampers. The steady decrease in power is due to struchlral danlping. Thc

remaining power is all dissipated by the connectcd dalnpcrs.

This example illustrates the importance of all types of power

components in a power ltow analysis, hnagine trying to discern a meaningful

powcr llow field from only l]exural powers in this example. The detected

powcrs in l.ink 3, which is adjacent to lhe input load, are all in the opositc

(fircclion, or toward the load. In I.ink 2, the analyst wouM see a sudden jump

in power to values that are higher than that of the input power, l:inally, in

I.ink 1, sporadic power curvcs wilh values near the input power at frequencies

below 100 llz and values near zero after 100 Hz would be found. Confusion

would surely rcsull, with erroncous conclusions soon following, l)ifliculties

like these would be compoulldcd in a real application wilh some degree ol'

complcxily.

CONCI,USIONS

The modifications made to NASTRAN and McPOW arc critical to the

power l]ow method. Without torsional incrtias applied to the bcanr element

mass lnatrices, any torsional effects in a dynamic problem are slatic. None of

the torsional power flows present in the example problem would exist, causing

incorrccl total power llow fields. Adding mass and damping effects to ll_e

clement force calculation algorithm is also important. In a reverberant

structure where forces and velocities are nearly 90 degrees out of phase with

each other, accurate calculations are necessary to guarantee good power llow

rcsulls. A small changc in the phase of an element force, causcd by neglecting

the malcrial loss factor, could cause large errors in clement power flows.

Also. at highcr frequencies, element mass terms can bccome significant and

affect thc clement force nmgnitudcs, and hence lhe clement power magnitudes.

The addition of torsional inertia to the beam clement mass matrix

formulation was straight-forward. The addition of damping and mass cffects to

the clcnlenl force calculation routines, however, was almost impossible. In

fact, lhc changes had to be made to McPOW instead of NASTIZAN. The

implementation difIiculties were duc to lhe way NASTRAN handles complex

analysis: ihc solutions are broken inlo real and imaginary paris. When lhc

program was in its formaliv¢ slagcs, UNIVAC compulers were supported.
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The UNIVAC, unfortunately, had no way of handling double precision

complex arithmetic. Therefore, no complex numbers or FORTRAN complex
functions are used in the elemcnt force calculation sections of tile program.

With this approach, a simple complex calculation like

[-_ [M]c + (1 + i,7)[K]e] {d}c must be split up into four calculations. Also,

since the calculation is frequency-dependent, the NASTRAN element forcc

subroutines are not currently able to handle it. Since the UNIVAC has atl but

disappeared from the COSMIC NASTRAN computing arena and most

modern computers support double precision complex arithmetic, perhaps the

way NASTRAN handles complex problems should be modified.

The importance of including longitudinal and torsional components with

flexural ones in a power flow analysis was shown in the example problem.

Measuring flexural power alone will not give an accurate indication of the total

power flow field in even a marginally complex problem. In the case of the

example problem, reflected flexural waves actually indicated a rcversal of

power flow in llae model, whc_e the direction of flexural power was in the

opposite dircction of the input power. Trying to interpret power flow results

that only consider flexural components will result in incorrect conclusions

concerning the total power flow field.
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ABSTRACT

NASHUA is a coupled finite element/boundary element capability built around

NASTRAN for calculating the low frequency far-field acoustic pressure field radiated or

scattered by an arbitrary, submerged, three-dimensional, elastic structure subjected to either

internal time-harmonic mechanical loads or external time-harmonic incident loadings. This

paper describes the formulation and nse of NASIIUA for solving such structural acoustics

problems when the structure is fluid-filled. NASTRAN is used to generate the structural
finite element model and to perform most of the required matrix operations. Both fluid

domains are modeled using the boundary element capabililty in NASHUA, whose matrix

formulation (and the associated NASTRAN DMAP) for evacuated structures can be used

with suitable interpretation of the matrix definitions. After computing surface pressures and

normal velocities, far-field pressures are ewfluated using an asymptotic form of the

Hehnholtz exterior integral equation. The proposed numerical approach is validated by

comparing the acoustic tield scattered from a submerged fluid-filled spherical thin shell to

that obtained with a series solution, which is also derived in this paper.

INTRODUCTION

Two basic problems in computational structural acoustics are (1) the calculation of the
acoustic pressure field radiated by a general submerged three-dimensional elastic structure

subjected to internal time-harmonic loads, and (2) the calculation of the acoustic pressure
scattered by such a structure subjected to an incident time-harmonic wavetrain. The most

common, as well as the most accurate, approach for solving these problems at low
frequencies is to couple a linilc elcrncnt model of the structure with a boundary element

model of the surrounding fluid. This is the approach taken by NASHUA, which is a

boundary element program built around NASq'RAN, a widely-used finite element computer
program for structural dynamics.

Several previous papers (Ref. 1-4) described the basic formulation and development for
acoustic radiation and scattering from evacuated structures. Here we describe the

formulation and use of NASIIUA for modeling submerged structures which are fluid-filled.
Internal fluid can occur because the structure is free-flooded or contains fluid-filled tanks. It

is possible to use existing NASTRAN capability to model the interior fluid with finite

elements (Ref. 5-7), but three-dimensional models with large nulnbers of fluid degrees of
freedom might result. An attractive altcrnative to the tluid finite element model is to

represent the contained l]uid using a boundary clement approach. Inprinciplc, any computer
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program capable of generating the appropriate boundary element matrices for an exterior
fluid is also capable of generating such matrices for the complementary region (the interior

region). NASTRAN's versatility in user-controlled matrix operations (DMAP) makes tile

implementation of such an approach straightforward.

THEORETICAL APPROACH

The basic theoretical development for NASIIUA's radiation and scaltcring approach

for evacuated structures has been presented in detail previously (Ref. 14). For

completeness, this paper summarizes that approach and describes tile changes necessary to
model the interior lluid with boundary elements in the same procedure. There is no

requirement that the interior and exterior fluids be the same.

The Surface Solutio. for Evacuated Structures

Consider any submerged three-dimensional, evacuated elastic structure subjectcd to
either internal time-harmonic loads or an external time-harmonic incident wavetrain. If the

structure is modeled with finite elements using NASTRAN, the resulting matrix equation of
motion can be written as

Zv = F - GAp, (1)

where matrix Z (of dimension s x s) is the structural impedance, vector v (s x r) is the

complex velocity amplitude for all structural DOF (wet and dry) using the coordinate systems

selected by the user, vector F (s x r) is the complex amplitude of the mechanical forces

applied to the structure, matrix G (s x f) is the reclangular transformation of direction

cosines to transform a vector of outward normal forces at the wet points to a vector of
forces at all points in the coordinate systems selected by the user, matrix A (f x f) is the

diagonal area matrix for the wet surface, and vector p (f x r) is the complex amplitude of

total pressures (incident + scattered) applied at the wet grid points. In this equation, the

time dependence exp(icct) has been suppressed. In the above dimensions, s denotes the total

number of independent structural I)OF (wet and dry), f denotes the numl_er of fluid DOF

(wet points), and r denotes the number of load cases. In general, tile surface areas, the
normals, and the transformation matrix G are obtained in NAStlUA from the NASTRAN

calculation of the load vector resulting from an outwardly directly static unit pressure load on
the structure's wet surface.

In Eq. 1, the structural impedance matrix Z, which converts velocity to force, is given

by

Z = (-_M + icvB + K)/(icv), (2)

where M, B, and K are the structural mass, viscous damping, and stiffncss matrices,

respectively, and a., is the circular frequency of excitation. For structures with a nonzero loss
factor, K is complex. In addition, K can include the differential stiffness effects of

hydrostatic pressure, if any (Ref. 3). A standard NASTRAN linite clement model of the

structure supplies tile matrices K, M, and B.

For the exterior lluid domain, the total ltuid pressure p satisfies the Helmhollz

differential equation
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V2p + k2p = 0,

where k = co/c is the acoustic wave number, and c is the fluid sound speed.

the exterior fluid, p is the solution of the Helmholtz integral equations (Ref. 8)

-- = P_I' - x' in E, (4)fs p(×) dS fs q(×)D(r)dS PI, x' in I,

where S, E, and I denote the surface, exterior, and interior domains, respectively, PI is the

incident free-field pressure (if ally), r is the distance from x to x' (Fig. 1), D is the free-space
Green's function

e-ikr
D(r) - 4_ ' (5)

o_ = _i_PVn (6)q = On

(3)

Equivalently, for

FLUID

P,

Fig. 1. Notation for Helmholtz Integral Equation

p is the fluid mass density, and v n is the outward normal velocity on S. As shown ill Fig. 1, x

in Eq. 4 is the position vector for a typical point Pj on the surface S, x' is the position vector
for the point Pi on the surface or in the exterior field, the vector r = x' - x, and n is the unit

outward normal at Pi We denote the lengths of the vectors x, x', and r by x, x', and r,
respectively. The normal derivative of the Green's function D is (Ref. 1)

OD(r) e-ik_ (ik + 1)- cos fl, (7)On 4_ r

where ,"_is the angle between the normal n and the vector r, as shown in Fig. 1.

All three integral equations in Eq. 4 are needed for exterior fluids. The surface
equation provides the fluid impedance at the fluid-structure inlerface. Since the surface
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equation exhibits non-uniqueness at certain discrete characteristic frequencies (Ref. 9), the

interior equation is used to provide additional constraint equations which ensure the required

uniqueness. The exterior equation is used to compute the exterior pressure field once the

mrface solution (which includes the fluid pressure and its gradient) is known.

The substitution of Eqs. 6 and 7 into the surface equation (4) yields

p(X') c-ikr (ik + 1) e -ikr
2 -fs p(x)--4_rr r cos i?dS = ic_'pJs, Vn(X) 4--4_vrdS + Pl, x'on S. (8)

This integral equation relates the total pressure p and norlnal velocity vn on S. If the

:c discrelizcd for mlmcrical compulalion (Ref. 1), wc obtain the malrixintegrals in 1.1. 8 are

equation (for the cxlcrior lluid)

Ep = Cv n +pi, (9)

where vector p (of dimension f x r) is the vector of complex alnplitudes of the total pressure

on the structure's wet surface, matrices E and C (both f x f) are fully-populaled, ccnzp!ex,

nonsymmctric, and frequency-dependent, and vector Pl (f x r) is the complex amplfiudc of

the incident pressure vector. The number of unknowns in lhis system is f, the number of

wet points on the lluid-slructure interface.

The normal velocities vn in Eq. 9 arc related to the total velocities v by the same

rectangular transformation matrix G:

v,, = GTv, (10)

where T denotes the matrix transpose. If velocities v and v n are eliminated from 1-:.qs. 1, 9,

and 10, the resulting equation for the coupled fluid-structure system is

(E+CGTZ-IGA) p = CGTZ-1F+pl. (11)

This equation is solved for tile total surface pressures p, since the rcst of the equation

depends only on the geometry, the material properties, and lhe frequency. Since the two

right-hand side terms in Eq. 11 correspond to lnechanical and incident loadings, only one of

the two terms would ordinarily be present for a given cast. The details o17 the incident

pressure vector Pl for scattering problems were presented previously (Ref. 2) and will not be

repeated here.

The velocity vector v for all structural DOF is recovered by solving Eq. 1 for v:

v = Z-IF - Z-1GAp. (12)

The surface normal velocity vector v. is recovered by substituting this solutioll for v into F.q.
10.

Modeling Interior Fluid

The theorclical development presented in the preceding section cml be modified slightly

to account also for an interior lluid. The wave equation, Eq. 3, applies also to interior lluids.

Although all three integral equations in Eq. 4 are generally needed for exterior lluids, only

the surface equation is needed to represent the surface impedance of interior fluids. Kq. 4a
also applies to interior fluids if the incident pressure Pl is set to zero, and lhe normal vcctor

n is negated. That is, the surface inlegral equation applies to both cxtcrior and interior fluids
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so long as the unit normal is always directed from the structure into the fluid. One other

consideration, perhaps unique to NASHUA, is that wet surface curvatures (which are

needed in the calculation of the "self" terms in matrix E) are negative at some interior points
(Ref. 1).

A matrix equation similar to Eq. (9) is therefore obtained for the interior fluid except
that the incident pressure PI is zero. The fluid matrices E and C are different for exterior

and interior domains (even if the separating surface S has infinitesimal thickness) because
the normals are of opposite sign.

Two-Fluid Formulation

Denote the exterior fluid as Fluid 1 and the interior fluid as Fluid 2, and use the

subscripts 1 and 2 to refer to these two domains. Also define new pressure and normal

velocity unknowns p and v,1 which include the solutions for both fluid domains:

{el} /Vnl/P = P2 ' Vn = • (13)lvo,4

Since there is no direct fluid coupling between the interior and exterior fluids, and the

incident pressure vanishes in the interior domain, Eqs. 1, 9, 10, and 11 apply also to the

two-fluid problem if the new definitions in Eq. 13 are used, and the matrices A, G, E, C,
and PI arc re-defined as

1= [11 ] 0= [O1 62] E= [El ] C = [C1 ] {P_I}A2 ' ' E2 ' C2 ' PI = . (14)

The principle benefit of formulating the two-fluid problem in this way is that the required

modifications to extend the procedure to three or more independent fluid domains is now
clear.

The Far-Field Calculation

With the solution for the total pressures and velocities on the surface, the exterior

Helmholtz integral equation, Eq. 4b, can be integrated to obtain the radiated (or scattered)

pressure at any desired location x' in the exterior field. We first substitute Eqs. 5 - 7 into Eq.
4b to obtain

p(x') = fs [io.,;v,l(x) + (ik + --1)p(x) cos #]
e-ikr

r _ dS, x' in E. (15)

In applications, however, the field pressures generally of interest are in the far-field, so we
use instead the asymptotic form of Eq. 15 (Ref. 1):

ike-ikx'

p(x') -- 4ax' fs [pcvn(x) + p(x) cos /3]eikx cos adS, x' in E, x' >> d, (16)

where d is a characterislic dimension of the structure, and ee is the angle between the vectors

x and x' (Fig. 1). For far-field points, cos 3 is computed using the asymptotic approximation
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X ?

cos fl ---* n "I . (17)
Xt

For both Eqs. 15 and 16, numcrical quadrature is used.

OVERVIEW OF SOLUTION PROCEDURE

The NASHUA solution procedure uses NASTRAN to generate the matrices K, M, B,

and F and to generate sufficient geometry information so that the matrices E, C, G, A, and

PI can be computed by a separate program called SURF. Then, NASTRAN DMAP is used

to form the matrices appearing ill Eq. 11, which is solved for the total pressures p (in both

fluid domains) using the block solver OCSOLV (Ref. 10). Next, NASTRAN DMAP is used

to recover the surface normal velocities vn and the vector v of velocities at all structural

DOF (NASTRAN's "g-set"). This step completes the surface solution. Then, with the total

pressures and velocities on the (exterior) surface, tile asymptotic (far-ticld) form of the

Helmholtz exterior integral equation is integrated in program FAROUT to compute lhc far-

field radiatcd pressures. Various tables and graphical displays are generated.

The overall setup of the solution procedure is organized into four steps. In Step 1, a

separate NASTRAN structural model is prepared and run for each unique set of symmetry

constraints and each fluid region. Since, for general three-dimensional analysis, up to three

planes of rellective symmetry are allowed, there would be one, two, four, or cight such runs
for each fluid region. Since the purpose of this step is to generate a file containing geometry

information and a checkpoint file for subsequent use in the other steps, tile only difference

between the two runs associated with a given symmetry case is the specification of the

outwardly directed unit pressure load which defines the wet surface for a given lluid region.

For each symmetry case and drive frequency, several programs are run sequentially to

form Step 2. For each fluid region, the SURF program reads the geometry file generatcd by

NASTRAN in Step 1 and, using the l:Ielmholtz surface and interior integral equations,

generates the fluid matrices El, E2, CI, and C2, the area matrices A 1 and A2, the structure-

fluid transformation matrices G1 and G2, the incident pressure vector PI1, and a geometry

file to be used later by the far-field integratiou program FAROUT in Step 3. In addition, a

partitioning vector is generated to facilitate the merging and partitioning of the various
matrices associated with the two fluid domains.

The two SURF jobs in Step 2 are followed by a NASTRAN job which takes the

structural matrices K, M, B, and F from Step 1 and the matrices geuerated by tile SURF

jobs and forms the matrices in Eq. 11, where the detinitions in Eq. 14 apply. Eq. 11 is then

solved for the total surface pressure vector p by program OCSOI,V, which is a general out-

of-core block solver designed specifically for large, full, complex, nonsymlnetric systems of

linear, algebraic equations. NASTRAN is then re-entercd in Step 2 with p so that the

velocities v and v n can be rccovered using DMAP opcrations. The surface pressures,

normal velocities, and full g-set displacements are then reformatted, sorted, and merged into

a single file (for each symlnetry case) using program MliRGE. Recall that there arc one,

two, four, or eight possible symmetry cases.

Steps 1 and 2 arc repeated for each symmetry case. Aftcr all symmetry cases have
been completed and merged, program FAROUT (Step 3) combines the symmetry cases and

integrates over thc surface. Thc far-field pressure solution is obtained by integrating the
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surface pressures and velocities using the asymptotic (far-field) form of the exterior

Helmholtz integral equation, Eq. 16. Output from FAROUT consists of both tables and files

suitable for various types of plotting.

The remaining steps in the NASIIUA procedure are for graphical display. Deformed

structural plots of the frequency response are obtained by restarting NASTRAN (Step 4)

with the checkpoint file from Step 1 and a results file from FAROUT. Ill addition, animated

plots can be generated on the Evans & Sutherland PS-330 graphics terminal using the

CANDI program written for the I)EC/VAX computer by R.R. Lipman of DTRC (Ref. 11).

X-Y plots of various quantities (both surface and far-field) versus frequency may be obtained

using IPLOT or other interactive plotting programs (Ref. 12). Polar plots of the far-field

sound pressure levels ill each of the three principal coordinate planes can also be generated

using the interactive graphics program FAFPI_OT (Ref. 1).

DMAP ALTERS

Several DMAP alters are used in the overall NASHUA procedure to implement lhe

preccduredescribcdinprccedingsection. For Step 1, the following alter is used:

ALTER

ALTER

ALTER

GP3

ALTER

SSG1

SSG2

OUTPUT2

OUTPUT2

OUTPUT2
PARAMR

COND

PARAMR

DIAGONAI,

ADD

RBMG2

SSG3

SDRI

TAI

I)SMG1

EQUIV

CONI)

MCE2

I,ABEL

EQUIV

CONI)

1 $ NASttUA STEP 1, COSMIC 1988 RF8 (REVISED 12/7/89)

2,2 $ DELETE PRECHK

21,21 $ REPLACE GP3

GEOM3,EQEXIN,GEOM2/SLT,GIqT/S,N,NOGR AV/NEVER=I $

117,117 $ REPLACE FRRD
SLT,BGPDT,CSTM,SIL,EST,MPT,GPTT,EDT,MGG,CASECC,DIT,/

PG .... /LUSET/NSKIP $ PG

USET,GM,YS,KFS,GO,DM,PG/QR,PO,PS,PL S PL

AXIC,BGPDT,EQEXIN,USET,PG $

PL,CSTM,ECT,, $

.... //-9 $

//*EQ*//C,Y,IISP=O./O.////NOHSP $

LBL4D,NOHSP $ SKIP DIFF. STIFF. IF NO ttYI)RO. P

//*COMPLEX//C,Y,HSP=O./O./HSPC $ HSP+I*0
KAA/KDIAG/*SQUARE*/1.0 $

KAA,KDIAG/KAAD/(I.0,0.0)/(I.E-6,0.) S
KAAD/LLI, $ FACTOR KAA

I_L I, K A AI) ,I'L,LOO ,K OO ,PO /UL V ,UOO V ,R U L V,I{ U O V / OMIT/

V,Y,IRES=-I/I/S,N,EPSI $ STATIC SOLUTION

USET,PG,UI,V,UOOV,YS,(JO,GM,PS,KFS,KSS,/UGV,I'GG,Q()/1/
*BKI_0* $ RECOVER DEPENDENT DISPLACEMENTS

ECT,EPT,BGI'I)T,S1L,GPTT,CS'FM/XI,X2,X3,ECPT,GPCT/LUSITI'/
NOS1MP/0/NOGENL/GENEL $ "FABLES FOR DI[:I:. STIFF.

CASECC,GPTT,SIL,EDT,UGV,CSTM,MPT,ECPT,GPCT,DI'F/KDGG/

S,N,DSCOSET $ DIFF. STIFF. MATRIX

KDGG,KDNN/MPCF2 / MGG,MNN/MPCF2 $ EQUIV IF NO MPC'S

LBL1D,MPCF2 $ TRANSFER IF NO MPC'S

USI_T,GM,K1)GG,,,/KDNN,,, $ MPC'S ON I)!I:t:. STIFF.

I,BL1D S

KDNN,KI)FF/SINGLE / MNN,MFF/SINGLE $ IiQUIV. II: NO SPC'S

I,BI,21),SIN(JI,E $ TI_ANSFF_P, 1F NO SPC'S
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SCE1

LABEL

EQUIV
COND

SMP2

LABEL

PARAMR

ADD

ADD

EQUIV

LABEL

DIAGONAL

ADD

ADD

FRRD

CHKPNT

CHKPNT

EXIT $

ENDALTER $

USET,KDNN,,,/KDFF,KDFS,KDSS,,, $ SPC'S AND DIFF. STIFF.
LBL2D $

KDFF,KDAA/OMIT / MFF,MAA/OMIT $ EQUIV. IF NO OMITS

LBL3D,OMIT $ TRANSFER IF NO OMITS

USET,GO,KDFF/KDAA $ OMITS AND DIFF. STIFF.
LBL3D $

//*SUBC*////MHSPC//HSPC $ NEGATE HYDRO. P

KDD,KDAA/NEWKDD/(1.0,0.0)/MHSPC $

KFS,KDFS/NEWKFS/(1.0,0.0)/MttSPC $
NEWKDD,KDD//NEWKFS,KFS $

LBL4D $ END OF DIFF. STIFF. EFFECTS (HSP)
KDD/IDENT/*SQUARE*/0. $ D-SET IDENTITY

IDENT,/IDM/(1.0,0.0) $ ANOTHER D-SET IDENTITY

IDENT,/ZERO/(O.O,O.O) $ D-SET ZERO MATRIX

CASEXX,USETD,DLT,FRL,GMD,GOD,IDENT,ZERO,IDM,,DIT/
UDVF, PSF, PDF, PPF/* Dr SP*/* DIRECT*/LU SETD/MPCF1 /

SINGLE/OMIT/NONCUP/FRQSET $ PDF, KDD=I, BDD=0, MDI)=i

MDD,KDD,BDD,PDF,PSF,PPF,EQDYN,USETD,GOD,GMD $

KFS,BGPDT,ECT,EQEXIN,GPECT,SIL $

Tile above alter does not depend on whether the fluid is interior or exterior to tile structure.

The Step 2 alters, however, depend on whether an interior fluid is present. For Step 2A, the
following alter is used:

ALTER

ALTER

INPUTT2

INPUTT2

MATPRN

PARAML

PARAMR

COND

PARAMR

COND

INPUTT2
OUTPUT2

OUTPUT2

CHKPNT

EXIT

LABEL

INPUTT2

TRNSP

ADD

OUTPUT2

OUTPUT2

CHKPNT

EXIT

LABEL

INPU3YF5

1 $ NASHUA STEP 2A, COSMIC 1988 RF8 (REVISED 11/7/89)
2,167 $ REPLACE ALL AFTER 'BEGIN' AND BEFORE 'END'

/DAT2 .... //13 $ INTERNAL FLUID

/DAT .... //11 $ READ SURF MATRIX FROM UT1

DAT,DAT2,,, $

DAT//*DMI*/1/8/RIGD $ GET RIGID FLAG

//*EQ*//RIGD/O.////ELAST $ SET ELAST=-I IF ELASTIC

LBL9D,ELAST $ IF ELASTIC, JUMP OVER RIGID/SOFT

//*EQ*//RIGD/2.////SOFT $ SET SOFT=-I IF SOFT BD.

LBL9E,SOFT $ IF SOFT BOUNDARY, JUMP OVER RIGID

/E,PI,VEKC,,//ll $ READ SURF MATRICES FROM UT1

PI,E,,,//-1 $ INPUTT2 FILE IS OVER-WRITTEN (UT1)
.... //-9 $ EOF

DAT,VEKC $
$

LBL9E $ BEGINNING OF SOFT ANALYSIS

/CT,PI,VEKC,,//11 $ READ SURF MATRICES FROM UT1
CT/C $

PI,/MPI/(-1.0,0.0) $ NEGATE PI

MPI,C,,, //-1 $ INPUTT2 FILE IS OVER-WRITTEN (UT1)
.... //-9 $ EOF

DAT,VEKC $

$
LBL9D $ BEGINNING OF ELASTIC ANALYSIS

/G2,A2,,,//14 $ INTERNAL FLUID
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INPUTT2

INPUTI'5

INPUTT2

MATPRN

MERGF.

MERGE

MERGE

MER(iE

MERGE

MATPRN

I'ARAML

PARAMR

PARAMR

PARAMR

PARAMR

PARAMR

ADD5

MPYAD

DECOMP

FBS

I.'I_,S
ADD

ADD

MPYAD

MPYAD

MPYAD

MPYAD

MERGE

MERGE

MERGE

EQUIV
MERGE

MERGE

MERGE

ADD

EQUIV

OUTPUT2

OUTPUT2

CiIKPNT

CIIKPNT
I!NDAI,TFR

/C2T,E2,PI2,VEKC2,//13 $ INTERNAL FLUID

IG1,Al,,,l/12 $ READ SURF MATRICES FROM UT2

/C1T,EI,PI1,VEKC,FVEC//11 $ READ SURF MATRICES

FVEC .... $

AI,,,A2,FVEC,/A/-1 $

EI,,,E2,FVEC,/E/-1 $

C1T,,,C2T,FVEC,/CT/-1 $

GI,,G2,,FVEC,/G/0 $

PI1 ..... FVEC/PI/0 $

VECM,VF.CS,,, $
DAT//*DMI*/I/2/FREQ $ GET FREQ FROM DAT

//*COMPLEX*/IFRI{Q/O./FREQC $ FREQ+I*0

//*MPYC*//I/W/FREQC/(6.283185,0.) $ OMEGA

//*MPYC*////IW/W/(O.,1.) $ I*OMEGA
//*MPYC*////WW/W/W $ OMEGA**2

I/*SUBC*////MWWl/WW $ -OMEGA**2

MDD,KDD,BI)I),,/Y/MWW/(1.0,0.0)/IW $

G,A,/GA/O $

Y/I ,,U/I//S,N,MINDIAG///S,N,SING $

L,U,GA/YIGA/1 S

L,U,PDF/YIF/1 $

YIGA,/ZIGA/1W $

YIF,/ZIF/IW $

G,ZIGA,/GTZIGA/1 $

CT,GTZIGA,E/II/I $ IMS
G,ZIF,/GTZIF/I $

CT,GTZIF,/Q/I $ MECHANICAL RHS

DUM,,PDF,,VECM,/I'DFI/1 $ MERGE IN 0 COLUMNS

DUM,,PSF,,VECM,/PSFI/1 $ MERGE IN 0 COLUMNS

DUM,,PPF,,VECM,/PPFI/I $ MERGE IN 0 COLUMNS

PDFI,PDF//PSI"I,PSF//PPF1,PPF $

DUM,,Q,,VECM,/RItS1/1 $ MERGE IN ZERO COLUMNS

DUM,,GTZIF,,VECM,/GTZIFE/1 $ MERGE IN 0 COLUMNS

DUM,,PI,,VECS,/RIIS2/I $ MERGE IN ZERO COLUMNS

RHS1,RItS2/RHS $ ADD MECH. AND INC. RHS

USETD,DUM1//GOD,DUM2//GMD,DUM3//KFS,DUM4 $

RtlS,II,,, //-1 $ INPUTT2 FILE IS OVER-WRITTEN (UTI)

.... //-9 $ EOF

GTZIGA,GTZIFli,GA,PI)F,I.U,PSF,DAT,VEKC,I_VEC $

USETD,GOD,GMD,KI;S $
$

Tile differcnccs between this alter and one used for submerged evacuated structures are due

to the need to read and combine two sets of SURF matrices, one for each lluid domain. For

Step 2B, lhe following alter is used:

AI.'I'EI_

AI.'I'ER

INPUTT2

I'ARTN

I'ARTN

I S NASIIUA STI:.P 2B, COSMIC 1988 RF8 (REVISED 11/7/89)
2,167 $ REPI.ACIZ AI_I, AFTER 'BEGIN' AND BEFORE 'END'

/PC .... //11 $ READ PP, I!SSURI!:.S FROM BLOCK SOLVER (UTI)
PC,,FVI+CII'I ,,,/0 $ REMOVE INTERNAl. FLUID I)OF

I'I,,VliKC/I',,,/O $ REMOVE CIIIEI" I)OF FROM I'
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COND

OUTPUT2

OUTPUT2

MATPRN

EXIT

LABEL

MPYAD

MPYAD

FBS

SDR1

PARTN

PARTN

OUTPUT2

OUTPUT2

MATPRN

ENDALTER

LBL9D,ELAST $ IF ELASTIC, JUMP OVER RIGID/SOFT

DAT,P,,, //-1 $ INPUTT2 FILE IS OVEP,-WRITTEN (UT1)
.... //-9 $ EOF

DAT,P,,, $ FOR SOFT BOUNDARY, P REPRESENTS VELOCITY

$
LBL9D $ ELASTIC ANALYSIS

GTZIGA,PC,GTZIFE/VNC/O/-1 $ NORMAI, VEI,OCITIES

GA,PC,PDF/FA/0/-1 $ A-SET FORCES

L,U,FA/UDVF/I $ A-SET DISPLACEMENTS

USETD,,UDVF,,,GOD,GMD,PSF,KFS,,/UPVC,,QPC/I /
*DYNAMICS* $

VNC,,FVEC/VI,,,/0 $ REMOVE INTERNAL FLUII) DOF
V1,,VEKC/VN,,,/O $ REMOVE CHIFF I)OF FROM VN

DAT,P,VN,UPVC, //-1 $ INPUTT2 FII,I'; IS OVEI_,-Wl_.ITTEN

.... //-9 $ EOF

DAT,P,VN,, $

$

This alter differs from one for evacuated structures l)ecause of the presence of several lnalrix

partitionings to remove the internal fluid DOF from the solution vectors before the solutions

are merged with the results for other frequencies.

NUMERICAL EXAMPLE

Here we illustrate and validate the two-fluid boundary element formulation developed

above by solving the problem of acoustic scattering from a submerged fluid-filled spherical

thin shell. The incident loading is a tilne-harmonic planar wavelrain, as shown in Fig. 2.

The specific problem solved has the following characlcrislics:

shell mean radius (a)

shell thickness (h)

shell Young's moduhls (E)

shell Poisson's ratio (u)

shell density (p_)

shell loss factor (r/)

fluid density (p)

fluid sound speed (c)

5 lil

0.15 m

2.07 x 1011 N/re"

0.3

7669 kg/m 3

0.01

1000 kg/m 3

1524 m/s

The same fluid is used for both the exterior and interior lluid domains. The solution of this

problem exhibits rotational symmetry about the spherical axis parallel to the direction of

wave propagation. The belachmark solution to which the numerical results will be compared

is a series solution, the derivation of which is summarizcd in the next section.

Series Solution

The series solution for scattering from a submerged cwlcuatcd spherical thin shell was

presented by Junger and Felt (Ref. 13). llere wc summarize that solution and indicate the

modilicalion necessary io include the addilion of an interior fluid which fills the sphcrical
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Fig. 2. Plane Wave Scattering from a Fluid-Filled Spherical Shell

in general, the series solution for plane wave scattering from a submerged, evacuated,

spherical thin shell involves computing the impedances of the shell and exterior fluid, the

scattered field due to rigid body effects, and the radiated field due to elastic (vibrational)

effects. The shell impedance (the ratio of pressure to normal velocity) for the nth
axisymmetric shell mode is

Zn =-ipsCp h [_--_2 (f_(1))2] [_-_2 (_'_(n2))2 ]

_'_ a [ _2 --( 1 --l--/_2) (//-{.-X n --1] ' (18)

where p_ is the structural mass density, Cp ='_E/[ps(1-v2)] , E is Young's modulus, v is

Poisson's ratio, f_= _a/Cp is t_c_dimensionless frequency, 11 is the shell thickness, a is the
shell mean radius, fl=h/(aV1912), and Xn =,1(,1+1). The quantities f_(1) and f_(2) are the

upper and lower shell resonance dimensionless frequencies, respectively. They are the

solutions of the characteristic equation

{p _ ll+3V+Xn__2(I_v_X__VX,_] f-;,2

+ (,_n--2)(1--V2)+_2[Xn3--4Xn2+X(5--V2)--2(1--p2)] = 0. (19)

The impedance of the exterior fluid, found by using the Green's flmction and identity for the
exterior fluid, is

hn(ka)

zn = ipc h'n(ka)' (20)

where h. is the Bessel's function of the third kind of order n.

Thus, Junger and Feit showed that the far-field scattered pressure is
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ieikRpo (2n+l)Pn(cos0) [ pc R>>a, (21)
p(R,0)= kI---_ _ h'n(ka) [J'"(ka) (Zn+zn)(ka)2h, (ka) ,

|1 =0

where R is the distance to the field point, 0 is the angle from the z-axis, Po is the incident

pressure, P, is the Legendre polynomial of order n, and j,1 is the Bessel's function of the first
kind of order n. The two terms in the bracketed expression correspond to rigid body and

radiated effects, respectively.

The above expression for the pressure scattered frorn an evacuated shell can be
extended to include the effects of the interior fluid merely by replacing the exterior fluid

impedance Zn in Eq. 21 with the sum of the fluid impedances for the exterior and interior

fluids. It can be shown, by using the Green's function and identity for the interior domain,

that the interior irnpedance, denoted S'n, is given by

Jn(ka) (22)
_|1 = - il, c j'n(ka)"

We note the resemblance between Eqs. 20 and 22 for the exterior and interior domains,

respectively.

The computer program used to evahmte this series solution is a modification of a

program called SCATSPHERE written by F.M. Itenderson, a retired employee of DTRC.
SCATSPHERE in turn is a variant of an earlier program called RADSPHERE (Ref. 14) for

computing the radiation from an interlaally-driven submerged spherical shell.

Numerical Solution

A NASTRAN finite element model of the spherical shell was prepared using 40

axisymmetric conical shell elements spanning the 180 degrees between the two poles of the

sphere. Due to the axisymmetry of the incident pressure loading, only the N = 0 harmonic

was required. Since all structural points are in contact with both interior and exterior fluids,

the resulting model therefore had 205 independent structural degrees of freedom (DOF) and
41 fluid DOF for each of the two fluid domains. System matrices for the exterior fluid were

also augmented by the addition of four constraint equations associated with interior Chief

points to ensure uniqueness of the integral representation at the upper frequencies. The

nondimensional frequency range 0<ka<5 was swept using a frequency increment of about ka
= 0.05 with NASHUA and ka = 0.005 with the series solutioll. Since the series solution is

converged, we treat it as an "exact" solution for this problem.

The comparison between the computed and exact solutions is presented is Figs. 3 and

4, which plot the frequency response of the nondimensional scattered pressure pr/(poa),

where p is the far-field scattered pressure at distance r from the origin, Po is the incident

pressure, and a is the mean radius of the spherical shell. These two figures show very good

agreement between the two scattering solutions in the backward (0 = 0) and forward (0 = 180
degrees) directions. In fact, the computed and series solutions are virtually indistinguislaable
from each other.
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Fig. 3. Forward Scattering from a Fluid-Filled Spherical Shell

3.0

2.5

2.0
O

a.
v

1.5

iX:

1.0

0.5

0.0

l | I

_ EXACT
COMPUTED

2.0 3.0 4..0 5.0
KA

Fig. 4. Backward Scattering from a Fluid-Filled Spherical Shell

DISCUSSION

A very general computational capability has been described for predicting the sound

pressure lield radiated or scattered by arbitrary, submerged, fluid-filled, three-dimensional
elastic structures subjected to time-harmonic loads. The structure is modeled with

NASTRAN (in all the generality that NASTRAN allows) in combination with boundary
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element models of both interior and exterior fluid domains. Sufficient automation is

provided so that, for many structures of practical interest, an existing structural model can

be adapted for NASHUA acoustic analysis within a few hours.

One of the many benefits of having NASHUA linked with NASTRAN is the ability to

integrate the acoustic analysis of a structure with other dynamic analyses. Thus the same
finite element model can be used for modal analysis, frequency response analysis, linear

shock analysis, and underwater acoustic analysis. In addition, many of the pre- and

postprocessors developed for use with NASTRAN become available for NASHUA as well.
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MONITORING OF RITZ MODAL GENERATION
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,' • 7

In applying a Ritz modal expansion to the solution of a

transient response, there is a problem as to how many modes are

needed to obtain accuracy to within a specified percentage.

One of us, Chargin, has suggested a method based on the

characteristics of the forcing function. The method can be

incorporated into the Ritz generation algorithm such that it will

automatically monitor, regulate and terminate the process

according to a specified tolerance.

FORCING FUNCTION CHARACTERISTICS

Assume that the forcing function F(x,t) can be repre-

sented as a product of a spatial function and a temporal func-

tion; i.e.

(i) F(x,t) = F(x) . f(t).

Develop a criterion based upon measuring the amount of power

developed in the forcing function F(x,t). The total power in

F(x,t) is the product of the "power" in F(x) and f(t) owing to

the assumption in equation (i). The scheme in outline is to

measure the temporal power and the spatial power in F(x,t) separ-

ately then compare the corresponding power in the Ritz modes

against power in each component of the forcing. Generation of
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MONITORINGOF RITZ MODALGENERATION

additional Ritz modes will continue until the power criteria are

met. First a measure is taken of the total power in the temporal
function.

Temporal Power

(2) P(_) = f(t) dt ,

where T is the interval over which the transient will act. There

could very well be a separate temporal function for each spatial

function. In that case of multiple loadings P(:) of equation (2)

would be a vector "i" long.

In order to tailor this power to our use as a guide in

selecting Ritz modes it will be useful to measure the amount of

temporal power as a function of frequency. Expand the temporal

function in a Fourier Series and sum the power versus the expan-

sion multiple:

(3)
= + alcos wt + blsin wt + a2cos 2wt + b2sin 2wtf(t) a°

+ ..... +a cos wt + b sin wt
n n

The power within a band 0 to nw is:

n I(4) Pn= _=0 aic°s iwt + bisin iwt = -:=0 ai

One can compare the amount of power within a given band P with
n

the total power P(_). When Pn is within close range of P(T), say

1%, then the analyst can be satisfied that the frequency range of

the truncated temporal forcing function is sufficiently broad to

encompass the temporal requirements of the forcing.
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MONITORING OF RITZ MODALGENERATION

P(_)

P
n

n

For a certain frequency f

quency be fo" n

nw Pn

= 2-_ ; _7_) - .99. Let this fre-

Spatial Power

Now turn to the spatial distribution of the forcing function

F(x;, and develop a measure that is called spatial power. Make

an additional assumption that all points being loaded have mass.

where [Clal = [F(x)TM] is a coefficient matrix that will be shown

to be usefual later. H(x) is a matrix if there are a number of

loading cases "I''.
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MONITORING OF RITZ MODAL GENERATIUN

At this point we have _ measures of the forcing fuction.

_e have f0 reflecting the desired frequency content and n(x)

reflecting the desired level of power to activate the structural

mass. Now it is time to test the adequacy of the number of Ritz

modes to repond to the forcing at these power levels.

First, get a spatial measure of the Ritz modes.8 k. A

simple scheme is to pattern the measure after equation (5) but

substitute the matrix of k spatial Ritz functions for the post-

multiply operation instead of the spatial component of loading

F(x).

(6)

r

k=l la

The way to use R r is to compare each dia_onal term of _(x) with

the corresponding diagonal term of R r to _ee if the ratio is

within a specified tolerance; i.e.

(7)
H 1 -Rrl

( e for every 1.

Keep generating additional Ritz modes e k k > r until an r has

been reached for which every diagonal term satisfies the

criterion.

Monitoring Function

If the 8 k satisfy the spatial power criterion of F(x,t) it does

not necessarily hold that 8 k will simultaneously satisfy the

temporal requirements of F(x,t). Therefore, use the 8 k which

have met the spatial power requirements ana obtain an estimate of

its frequency content Dy setting up the frequency equation. Use
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MONITORING OF RITZ MODAL GENERATION

an estimator that is much less demanding than

eigenvalue problem. Merely do the following.

solving the

Compute a kt-_h order Ritz generalized mass and stiffness; i.e.

(8)

and construct a test

threshold frequency, f
O'

V 1

matrix called |Sk| which involves the
L J

determined from the temporal power P
n

Decompose [Ski and extract the value of the output parameter

NBRCHG issued by the DECOMP module. Param NBRCHG reports the

number of negative values on the factor diagonal of S k which is

tantamount to the number of sign changes o_ zero crossings in the

characteristic equation. If the value of NBRCHG = k, it

indicates that the frequencies of all k Ritz modes are less than

fo" One would be inclined to want the frequency content of the

Ritz modes to bracket fo; i.e. some modes _ith a frequecy _ fo"

This implies that one would seek to have the value o_ NBRCHG to

be less than the order of matrix S k. This idea can be buzlt into

the Ritz generatlon routzne as a test as _o whether enough modes

have been generated to within a certain margin _ such that fn >

_fo' where the user specifies _.

Obviously, one would not want to repeat the elgenvalue

estimate each time a new Ritz mode is obtained, because @TK O k

and eTM @k could become expensive as M becomes large. Therefore

develop a scheme whereby the spatial power is reduced by some

factor _ ; i; i e 6ne w Sol d ¥. Typically, one can use a value
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MONITORING OF RITE MODAL GENE£ATION

of 2 to 4 for 7. Once the spatial

repeat the eigenvalue estimate test.

error e is satlsl led,
iqe_"

Conclusion

A scheme has Deen proposed to monitor the adequacy of a

set of Ritz modes to represent a solution by comparzng the

quantity generated with certain properties involving the forcing

function. In so doing an attempt has been made to keep t_is

algorithm lean and efficient, so that it will be economical to

apply. Using this monitoring scheme during Ritz Mode generation

will automatically ensure that the k Ritz modes 0 k that are

generated are adequate to represent both the spatial and temporal

behavior of the structure when forced under the given transient

condition defined by F(x,t).
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